Home About us Contact | |||
Antarctic Terrestrial Habitats (antarctic + terrestrial_habitat)
Selected AbstractsPatterns of bacterial diversity across a range of Antarctic terrestrial habitatsENVIRONMENTAL MICROBIOLOGY, Issue 11 2007Etienne Yergeau Summary Although soil-borne bacteria represent the world's greatest source of biological diversity, it is not well understood whether extreme environmental conditions, such as those found in Antarctic habitats, result in reduced soil-borne microbial diversity. To address this issue, patterns of bacterial diversity were studied in soils sampled along a > 3200 km southern polar transect spanning a gradient of increased climate severity over 27° of latitude. Vegetated and fell-field plots were sampled at the Falkland (51°S), South Georgia (54°S), Signy (60°S) and Anchorage Islands (67°S), while bare frost-sorted soil polygons were examined at Fossil Bluff (71°S), Mars Oasis (72°S), Coal Nunatak (72°S) and the Ellsworth Mountains (78°S). Bacterial 16S rRNA gene sequences were recovered subsequent to direct DNA extraction from soil, polymerase chain reaction amplification and cloning. Although bacterial diversity was observed to decline with increased latitude, habitat-specific patterns appeared to also be important. Namely, a negative relationship was found between bacterial diversity and latitude for fell-field soils, but no such pattern was observed for vegetated sites. The Mars Oasis site, previously identified as a biodiversity hotspot within this region, proved exceptional within the study transect, with unusually high bacterial diversity. In independent analyses, geographical distance and vegetation cover were found to significantly influence bacterial community composition. These results provide insight into the factors shaping the composition of bacterial communities in Antarctic terrestrial habitats and support the notion that bacterial diversity declines with increased climatic severity. [source] Soil arthropods as indicators of water stress in Antarctic terrestrial habitats?GLOBAL CHANGE BIOLOGY, Issue 12 2003Peter Convey Abstract Abiotic features of Antarctic terrestrial habitats, particularly low temperatures and limited availability of liquid water, strongly influence the ecophysiology and life histories of resident biota. However, while temperature regimes of a range of land microhabitats are reasonably well characterized, much less is known of patterns of soil water stress, as current technology does not allow measurement at the required scale. An alternative approach is to use the water status of individual organisms as a proxy for habitat water status and to sample over several years from a population to identify seasonal or long-term patterns. This broad generalization for terrestrial invertebrates was tested on arthropods in the maritime Antarctic. We present analyses of a long-term data set of body water content generated by monthly sampling for 8,11 years of seven species of soil arthropods (four species of Acari, two Collembola and one Diptera) on maritime Antarctic Signy Island, South Orkney Islands. In all species, there was considerable within- and between-sample variability. Despite this, clear seasonal patterns were present in five species, particularly the two collembolans and a prostigmatid mite. Analyses of monthly water content trends across the entire study period identified several statistically significant trends of either increase or decrease in body water content, which we interpret in the context of regional climate change. The data further support the separation of the species into two groups as follows: firstly, the soft-bodied Collembola and Prostigmata, with limited cuticular sclerotization, which are sensitive to changes in soil moisture and are potentially rapid sensors of microhabitat water status, secondly, more heavily sclerotized forms such as Cryptostigmata (=Oribatida) and Mesostigmata mites, which are much less sensitive and responsive to short-term fluctuations in soil water availability. The significance of these findings is discussed and it is concluded that annual cycles of water content were driven by temperature, mediated via radiation and precipitation, and constituted reliable indicators of habitat moisture regimes. However, detailed ecophysiological studies are required on particular species before such information can be used to predict over long timescales. [source] Geothermal bryophyte habitats in the South Sandwich Islands, maritime AntarcticJOURNAL OF VEGETATION SCIENCE, Issue 4 2006P. Convey Ochyraet al. (in press) for mosses, Bednarek-Ochyra et al. (2000) for liverworts, Øvstedal & Lewis Smith (2001) for lichens Abstract Question: How does geothermal activity influence terrestrial plant colonization, species composition and community development in the Antarctic? Location: South Sandwich Islands, maritime Antarctic. Methods: Bryophytes were documented during a biological survey of the archipelago in January and February 1997. Particular attention was given to sites under current or recent influence of geothermal activity. Temperature profiles obtained across defined areas of activity on several islands were linked with the presence of specific bryophytes. Results: Greatest bryophyte richness was associated with geothermally influenced ground. Of 35 moss and nine liverwort species recorded, only four mosses were never associated with heated ground, while eight of the liverworts and 50% of the mosses were found only on actively or recently heated ground. Some species occur in unheated sites elsewhere in the maritime Antarctic, but were absent from such habitats on the South Sandwich Islands. Several species occurred in distinct zones around fumaroles. Maximum temperatures recorded within the upper 0.5 cm of the vegetation surface were 40 - 47 °C, with only Campylopus introflexus tolerating such temperatures. Maximum temperatures 2.5 or 5 cm below the vegetation surface of this moss reached 75 °C. Other bryophytes regularly present in zoned vegetation included the mosses Dicranella hookeri, Sanionia georgico-uncinata, Pohlia nutans and Notoligotrichum trichodon, and the liverworts Cryptochila grandiflora and Marchantia berteroana. Surface temperatures of 25 - 35 °C and subsurface temperatures of 50 - 60 °C were recorded in these species. Conclusions: These exceptional plant communities illustrate the transport of viable propagules into the Antarctic. Individually ephemeral in nature, the longer term existence of geothermal habitats on islands along the Scotia Arc may have provided refugia during periods of glacial expansion, facilitating subsequent recolonization of Antarctic terrestrial habitats. [source] |