Level Effects (level + effects)

Distribution by Scientific Domains


Selected Abstracts


EMPLOYEE SILENCE ON CRITICAL WORK ISSUES: THE CROSS LEVEL EFFECTS OF PROCEDURAL JUSTICE CLIMATE

PERSONNEL PSYCHOLOGY, Issue 1 2008
SUBRAHMANIAM TANGIRALA
This study examined the cross-level effects of procedural justice climate on employee silence,that is, the intentional withholding of critical work-related information by employees from their workgroup members. In a survey-based study of 606 nurses nested within 30 workgroups, we found that procedural justice climate moderated the effects of individual-level antecedents of employee silence. Specifically, when procedural justice climate was higher, the effects of antecedents that inhibit employee silence (e.g., workgroup identification, professional commitment) were stronger. Implications for research and practice are discussed. [source]


An experimental investigation of water level effects on the dynamic behaviour of a large arch dam

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 8 2001
Jean Proulx
Abstract The need for full-scale dynamic tests, which are recognized as the most reliable method to evaluate a structure's vibration properties, is increasing as new analysis techniques are developed that take into account the complex interaction phenomenons that occur in dam,reservoir,foundation systems. They are extremely useful to obtain reliable data for the calibration of newly developed numerical methods. The Earthquake Engineering and Structural Dynamics Research Center (CRGP) at the University of Sherbrooke has been developing and applying dynamic testing methods for large structures in the past 10 years. This paper presents the experimental evaluation of the effects of the varying water level on the dynamic response of the 180 m Emosson arch dam in Switzerland. Repeated forced-vibration tests were carried out on the dam during four different periods of the reservoir's filling cycle during a one-year span. Acceleration and hydrodynamic pressure frequency responses were obtained at several locations while the dam was subjected to horizontal harmonic loading. The variation of the resonant frequencies as a function of the reservoir level is investigated. A summary of the ongoing numerical correlation phase with a three-dimensional finite element model for the dam,reservoir,foundation system is also presented. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Elevated air temperature alters an old-field insect community in a multifactor climate change experiment

GLOBAL CHANGE BIOLOGY, Issue 4 2009
SHAWN N. VILLALPANDO
Abstract To address how multiple, interacting climate drivers may affect plant,insect community associations, we sampled insects that naturally colonized a constructed old-field plant community grown for over 2 years under simultaneous CO2, temperature, and water manipulation. Insects were sampled using a combination of sticky traps and vacuum sampling, identified to morphospecies and the insect community with respect to abundance, richness, and evenness quantified. Individuals were assigned to four broad feeding guilds in order to examine potential trophic level effects. Although there were occasional effects of CO2 and water treatment, the effects of warming on the insect community were large and consistent. Warming significantly increased Order Thysanoptera abundance and reduced overall morphospecies richness and evenness. Nonmetric multidimensional scaling found that only temperature affected insect community composition, while a Sørensen similarity index showed less correspondence in the insect community between temperature treatments compared with CO2 or soil water treatments. Within the herbivore guild, elevated temperature significantly reduced richness and evenness. Corresponding reductions of diversity measures at higher trophic levels (i.e. parasitoids), along with the finding that herbivore richness was a significant predictor of parasitoid richness, suggest trophic-level effects within the insect community. When the most abundant species were considered in temperature treatments, a small number of species increased in abundance at elevated temperature, while others declined compared with ambient temperature. Effects of temperature in the dominant insects demonstrated that treatment effects were limited to a relatively small number of morphospecies. Observed effects of elevated CO2 concentration on whole-community foliar N concentration did not result in any effect on herbivores, which are probably the most susceptible guild to changes in plant nutritional quality. These results demonstrate that climatic warming may alter certain insect communities via effects on insect species most responsive to a higher temperature, contributing to a change in community structure. [source]


Measurement non-invariance of DSM-IV narcissistic personality disorder criteria across age and sex in a population-based sample of Norwegian twins

INTERNATIONAL JOURNAL OF METHODS IN PSYCHIATRIC RESEARCH, Issue 3 2010
Thomas S. Kubarych
Abstract We investigated measurement non-invariance of DSM-IV narcissistic personality disorder (NPD) criteria across age and sex in a population-based cohort sample of 2794 Norwegian twins. Age had a statistically significant effect on the factor mean for NPD. Sex had a statistically significant effect on the factor mean and variance. Controlling for these factor level effects, item-level analysis indicated that the criteria were functioning differently across age and sex. After correcting for measurement differences at the item level, the latent factor mean effect for age was no longer statistically significant. The mean difference for sex remained statistically significant after correcting for item threshold effects. The results indicate that DSM-IV NPD criteria perform differently in males and females and across age. Differences in diagnostic rates across groups may not be valid without correcting for measurement non-invariance. [source]


Seed predation during general flowering events of varying magnitude in a Malaysian rain forest

JOURNAL OF ECOLOGY, Issue 4 2007
I-FANG SUN
Summary 1The lowland dipterocarp forests of Southeast Asia exhibit interspecifically synchronized general flowering (GF) and mast fruiting at irregular multi-year intervals of 1 to 11 years. The predator satiation hypothesis (PSH) posits that GF events enhance seed survival by reducing the survival, reproduction and population sizes of seed predators between GF events, and then satiating the reduced seed predator populations during GF events. 2Three GF events of different magnitudes occurred in Pasoh Forest Reserve, Peninsular Malaysia, during 2001, 2002 and 2005. We exploited this natural experiment to test two predictions of the PSH. The first prediction was that seed survival should increase with the magnitude of the GF event. The second prediction was that seed predation should decrease with time since the previous GF event. 3A reproductive survey of all (c. 900) dipterocarp trees 30 cm d.b.h. in a 50 ha plot showed that flowering pervasiveness (the proportion of dipterocarp species participating) was high and similar in all three GF events. However, relative flowering magnitudes (measured by an index of individual tree participation and flowering intensity in Shorea species) were 2, 5 and 8 for the 2001, 2002 and 2005 GF events, respectively. 4The percentage of Shorea seeds surviving pre- and post-dispersal predation increased with the magnitude of GF events, which is consistent with the first prediction. 5Pre-dispersal insect seed predators consumed 12.9%, 11.2% and 3.4% of Shorea seeds in the 2001, 2002 and 2005 GF events, respectively, which is consistent with both predictions. 6Pre-dispersal seed predation by primates (mainly leaf monkeys) increased from 11.9% to 38.6% then fell to 9.3% in the 2001, 2002 and 2005 GF events, respectively. 7Predator satiation occurred only at population and community levels. At the individual tree level there was no relationship between the percentage of seeds surviving pre- and post-dispersal seed predation and variation in seed crop size or seed density beneath the tree. This suggests that attempts to test the PSH on the scale of individual trees may miss key community level effects. 8Our results suggest a more significant role of pre-dispersal seed predation in the evolution of reproductive synchrony than was recognized in the original statement of the PSH. [source]


Linking physiological traits to impacts on community structure and function: the role of root hemiparasitic Orobanchaceae (ex-Scrophulariaceae)

JOURNAL OF ECOLOGY, Issue 1 2005
G. K. PHOENIX
Summary 1The hemiparasitic Orobanchaceae (ex-Scrophulariaceae) are characterized by a distinctive suite of ecophysiological traits. These traits have important impacts on host plants and non-host plants, and influence interactions with other trophic levels. Ultimately, they can affect community structure and functioning. Here, we review these physiological traits and discuss their ecological consequences. 2The root hemiparasitic Orobanchaceae form a convenient subset of the parasitic angiosperms for study because: they are the most numerous and most widely distributed group of parasitic angiosperms; their physiological characteristics have been well studied; they are important in both agricultural and (semi)natural communities; and they are tractable as experimental organisms. 3Key traits include: high transpiration rates; competition with the host for nutrients and haustorial metabolism of host-derived solutes; uptake of host-derived secondary metabolites; dual autotrophic and heterotrophic carbon nutrition; distinct carbohydrate biochemistry; high nutrient concentrations in green leaf tissue and leaf litter; and small (often hairless and non-mycorrhizal) roots. 4Impacts on the host are detrimental, which can alter competitive balances between hosts and non-hosts and thus result in community change. Further impacts may result from effects on the abiotic environment, including soil water status, nutrient cycling and leaf/canopy temperatures. 5However, for non-host species and for organisms that interact with these (e.g. herbivores and pollinators) or for those that benefit from changes in the abiotic environment, the parasites may have an overall positive effect, suggesting that at the community level, hemiparasites may also be considered as mutualists. 6It is clear that through their distinctive suite of physiological traits hemiparasitic Orobanchaceae, have considerable impacts on community structure and function, can have both competitive and positive interactions with other plants, and can impact on other trophic levels. Many community level effects of parasitic plants can be considered analogous to those of other parasites, predators or herbivores. [source]


Maternal diets, nutritional status, and zinc in contemporary Mexican infants' teeth: Implications for reconstructing paleodiets

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2009
Alexis E. Dolphin
Abstract Despite attempts to use zinc (Zn) concentrations in hard tissues to comment upon the degree of carnivory in past populations, zinc has yielded inconsistent trophic level effects. The question of what, if anything, zinc in human enamel reveals regarding past diets is the focus of this research. We test whether the zinc content of deciduous tooth enamel from contemporary Mexican infants varies by maternal dietary variables such as zinc intake, proportion of animal products consumed, and dietary components that are known to impact zinc absorption. Deciduous teeth were collected from former participants in a longitudinal study of maternal and infant diet and function in highland Mexico. The Zn/Ca ratios of both prenatal and postnatal regions of 37 anterior teeth representing 26 individuals were assessed via laser ablation,inductively coupled plasma,mass spectrometry. Maternal dietary data collected during lactation were not correlated with zinc levels in the early postnatal enamel of infants' teeth, which were forming at the same time. In the case of prenatal enamel, zinc values were correlated with the consumption of foods known to influence Zn bioavailability, most notably tortillas (P = 0.008; r = 0.510), but not with meat consumption. Unexpectedly, women who consumed diets with poor zinc bioavailability during pregnancy gave birth to infants whose prenatal enamel demonstrated the highest Zn/Ca ratios, possibly due to enhanced zinc absorption during pregnancy for those mothers suffering most from long-term micronutrient deficiency. These results would suggest that zinc is not a reliable trophic level indicator. Am J Phys Anthropol, 2009. © 2009 Wiley-Liss, Inc. [source]


Nonlinear asymmetric models of the short-term interest rate

THE JOURNAL OF FUTURES MARKETS, Issue 9 2006
K. Ozgur DemirtasArticle first published online: 18 JUL 200
This study introduces a generalized discrete time framework to evaluate the empirical performance of a wide variety of well-known models in capturing the dynamic behavior of short-term interest rates. A new class of models that displays nonlinearity and asymmetry in the drift, and incorporates the level effect and stochastic volatility in the diffusion function is introduced in discrete time and tested against the popular diffusion, GARCH, and level-GARCH models. Based on the statistical test results, the existing models are strongly rejected in favor of the newly proposed models because of the nonlinear asymmetric drift of the short rate, and the presence of nonlinearity, GARCH, and level effects in its volatility. The empirical results indicate that the nonlinear asymmetric models are better than the existing models in forecasting the future level and volatility of interest rate changes. © 2006 Wiley Periodicals, Inc. Jrl Fut Mark 26:869,894, 2006 [source]


Silicon-augmented resistance of plants to herbivorous insects: a review

ANNALS OF APPLIED BIOLOGY, Issue 2 2009
O.L. Reynolds
Abstract Silicon (Si) is one of the most abundant elements in the earth's crust, although its essentiality in plant growth is not clearly established. However, the importance of Si as an element that is particularly beneficial for plants under a range of abiotic and biotic stresses is now beyond doubt. This paper reviews progress in exploring the benefits at two- and three-trophic levels and the underlying mechanism of Si in enhancing the resistance of host plants to herbivorous insects. Numerous studies have shown an enhanced resistance of plants to insect herbivores including folivores, borers, and phloem and xylem feeders. Silicon may act directly on insect herbivores leading to a reduction in insect performance and plant damage. Various indirect effects may also be caused, for example, by delaying herbivore establishment and thus an increased chance of exposure to natural enemies, adverse weather events or control measures that target exposed insects. A further indirect effect of Si may be to increase tolerance of plants to abiotic stresses, notably water stress, which can in turn lead to a reduction in insect numbers and plant damage. There are two mechanisms by which Si is likely to increase resistance to herbivore feeding. Increased physical resistance (constitutive), based on solid amorphous silica, has long been considered the major mechanism of Si-mediated defences of plants, although there is recent evidence for induced physical defence. Physical resistance involves reduced digestibility and/or increased hardness and abrasiveness of plant tissues because of silica deposition, mainly as opaline phytoliths, in various tissues, including epidermal silica cells. Further, there is now evidence that soluble Si is involved in induced chemical defences to insect herbivore attack through the enhanced production of defensive enzymes or possibly the enhanced release of plant volatiles. However, only two studies have tested for the effect of Si on an insect herbivore and third trophic level effects on the herbivore's predators and parasitoids. One study showed no effect of Si on natural enemies, but the methods used were not favourable for the detection of semiochemical-mediated effects. Work recently commenced in Australia is methodologically and conceptually more advanced and an effect of Si on the plants' ability to generate an induced response by acting at the third trophic level was observed. This paper provides the first overview of Si in insect herbivore resistance studies, and highlights novel, recent hypotheses and findings in this area of research. Finally, we make suggestions for future research efforts in the use of Si to enhance plant resistance to insect herbivores. [source]