Lethal Levels (lethal + level)

Distribution by Scientific Domains


Selected Abstracts


The mortality of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) neonate larvae in relation to drop-off and soil surface temperature: the dangers of bungy jumping

AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 4 2008
David J Perovi
Abstract The first larval instar has been identified as a critical stage for population mortality in Lepidoptera, yet due to the body size of these larvae, the factors that contribute to mortality under field conditions are still not clear. Dispersal behaviour has been suggested as a significant, but ignored factor contributing to mortality in first-instar lepidopteran larvae. The impact that leaving the host plant has on the mortality rate of Helicoverpa armigera neonates was examined in field crops and laboratory trials. In this study the following are examined: (1) the effects of soil surface temperature, and the level of shade within the crop, on the mortality of neonates on the soil after dropping off from the host plant; (2) the percentage of neonates that dropped off from a host plant and landed on the soil; and (3) the effects of exposure to different soil surface temperatures on the development and mortality of neonates. The findings of this study showed that: (1) on the soil, surface temperatures above 43°C were lethal for neonates, and exposure to these temperatures contributed greatly to the overall mortality rate observed; however, the fate of neonates on the soil varied significantly depending on canopy closure within the crop; (2) at least 15% of neonates dropped off from the host plant and landed on the soil, meaning that the proportion of neonates exposed to these condition is not trivial; and (3) 30 min exposure to soil surface temperatures approaching the lethal level (>43°C) has no significant negative effects on the development and mortality of larvae through to the second instar. Overall leaving the plant through drop-off contributes to first-instar mortality in crops with open canopies; however, survival of neonates that have lost contact with a host plant is possible, and becomes more likely later in the crop growing season. [source]


Among- and within-population variability in tolerance to cadmium stress in natural populations of Daphnia magna: Implications for ecological risk assessment

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2002
Carlos Barata
Abstract Previous attempts to test the hypothesis that laboratory selection of isogenetic populations can produce test organisms with a significantly increased mean tolerance to toxic substances have failed. One possible explanation for such failure is that the tolerance of laboratory populations is largely constrained by their origins (were the source populations composed of tolerant genotypes?). To address this question, among- and within-population variability in stress tolerance was assessed by calculating the variance in individual fitness and longevity across a cadmium gradient (0,10 ,g/L). The study employed Daphnia magna clones from four geographically separate European populations. Results revealed significant differences in tolerance to lethal levels of toxic stress among populations. The distribution of tolerances within two of the studied populations showed high amounts of genetic variation in tolerance. Genetic relationships between tolerance traits and life history performance under nonstressful environments differed among the studied populations. One population showed significant but low costs associated with tolerance, whereas no costs were associated with tolerance in the other population. These results suggest that laboratory selection will favor individuals with high fitness or reproductive performance under optimal laboratory conditions resulting in laboratory populations with similar or lower tolerance to toxic stress than their original field populations. Given that populations can exhibit high levels of genetic variability in tolerance to toxic stress, minimizing genetic diversity in toxicity tests will increase the uncertainty attendant in extrapolating from the lab to the field. [source]


Interactions between gnathiid isopods, cleaner fish and other fishes on Lizard Island, Great Barrier Reef

JOURNAL OF FISH BIOLOGY, Issue 9 2008
A. S. Grutter
The rate of emergence of micropredatory gnathiid isopods from the benthos, the proportion of emerging gnathiids potentially eaten by Labroides dimidiatus, and the volume of blood that gnathiids potentially remove from fishes (using gnathiid gut volume) were determined. The abundance (mean ±s.e.) of emerging gnathiids was 41·7 ± 6·9 m,2 day,1 and 4552 ± 2632 reef,1 day,1 (reefs 91,125 m2). The abundance of emerging gnathiids per fish on the reef was 4·9 ± 0·8 day,1; but excluding the rarely infested pomacentrid fishes, it was 20·9 ± 3·8 day,1. The abundance of emerging gnathiids per patch reef was 66 ± 17% of the number of gnathiids that all adult L. dimidiatus per reef eat daily while engaged in cleaning behaviour. If all infesting gnathiids subsequently fed on fish blood, their total gut volume per reef area would be 17·4 ± 5·6 mm3 m,2 day,1; and per fish on the reefs, it would be 2·3 ± 0·5 mm,3 fish,1 day,1 and 10·3 ± 3·1 mm3 fish,1 day,1 (excluding pomacentrids). The total gut volume of gnathiids infesting caged (137 mm standard length, LS) and removed from wild (100,150 mm LS) Hemigymnus melapterus by L. dimidiatus was 26·4 ± 24·6 mm3 day,1 and 53·0 ± 9·6 mm3 day,1, respectively. Using H. melapterus (137 mm LS, 83 g) as a model, gnathiids had the potential to remove, 0·07, 0·32, 0·82 and 1·63% of the total blood volume per day of each fish, excluding pomacentrids, caged H. melapterus and wild H. melapterus, respectively. In contrast, emerging gnathiids had the potential of removing 155% of the total blood volume of Acanthochromis polyacanthus (10·7 mm LS, 0·038 g) juveniles. That L. dimidiatus eat more gnathiids per reef daily than were sampled with emergence traps suggests that cleaner fishes are an important source of mortality for gnathiids. Although the proportion of the total blood volume of fishes potentially removed by blood-feeding gnathiids on a daily basis appeared to be low for fishes weighing 83 g, the cumulative effects of repeated infections on the health of such fish remains unknown; attacks on small juvenile fishes, may result in possibly lethal levels of blood loss. [source]


Inactivation of patS and hetN causes lethal levels of heterocyst differentiation in the filamentous cyanobacterium Anabaena sp.

MOLECULAR MICROBIOLOGY, Issue 1 2005
PCC 7120
Summary In the filamentous cyanobacterium Anabaena sp. PCC 7120 patS and hetN suppress the differentiation of vegetative cells into nitrogen-fixing heterocysts to establish and maintain a pattern of single heterocysts separated by approximately 10 undifferentiated vegetative cells. Here we show that the patS - and hetN -dependent suppression pathways are the only major factors that prevent vegetative cells from differentiating into heterocysts when a source of ammonia is not present. The patS and hetN pathways are independent of each other, and inactivation of both patS and hetN leads to differentiation of almost all cells of a filament in the absence of a source of fixed nitrogen, compared with approximately 9% in the wild type. Complete differentiation of filaments also occurs when nitrate is supplied as a source of fixed nitrogen, conditions that do not induce differentiation of wild-type filaments. However, ammonia is still capable of suppressing differentiation. The percentage of cells that differentiate into heterocysts appears to be a function of time when a source of fixed nitrogen is absent or a function of growth phase when nitrate is supplied. Although differentiation proceeds unchecked in the absence of patS and hetN expression, differentiation is asynchronous and non-random. [source]