Left Femur (leave + femur)

Distribution by Scientific Domains


Selected Abstracts


Successful treatment of extensive muscle calcification in a patient with primary idiopathic polymyositis with diltiazem

INTERNATIONAL JOURNAL OF RHEUMATIC DISEASES, Issue 3 2006
Yasser EMAD
Abstract A 25-year-old female patient with documented diagnosis of polymyositis developed extensive muscle calcification in the left thigh muscles with overlying skin induration one year after her disease onset, despite well controlled myositis. Plain X-ray of the left femur and hip revealed extensive calcification involving the periarticular soft tissue shadows around the left hip and left upper thigh. The patient received diltiazem 90 mg/day in divided doses and follow-up plain X-ray study after 6 months of treatment revealed almost complete resolution of the muscle calcifications. [source]


Climbing Exercise Increases Bone Mass and Trabecular Bone Turnover Through Transient Regulation of Marrow Osteogenic and Osteoclastogenic Potentials in Mice,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2003
Toshiharu Mori
Abstract To investigate the relationship between the effects of bone turnover and bone marrow cell development in bone cells, we developed a mouse voluntary climbing exercise model. Climbing exercise increased bone volume and transient osteogenic potential of bone marrow. This model would be suitable for investigating the mechanistic roles of mechanical loading. Introduction: The relationship between bone mass gain and local bone formation and resorption in mechanically loaded bone is not well understood. Materials and Methods: Sixty-five C57BL/6J mice, 8 weeks of age, were assigned to five groups: a baseline control and two groups each of ground control and climbing exercise mice for 2 and 4 weeks. Mice were housed in a 100-cm tower and had to climb toward a bottle placed at the top to drink water. Results: Compared with the ground control, bone mineral density of the left femur increased in the climbing mice at 4 weeks. At 2 and 4 weeks, bone formation rate (BFR/BS) of periosteal surface, the cross-sectional area, and moment of inertia were increased in the climbing mice, whereas BFR/BS and eroded surface (ES/BS) of endosteal surface did not differ. The trabecular bone volume (BV/TV) of the proximal tibia increased in climbing mice, and osteoclast surface (Oc.S/BS) and osteoclast number decreased at 2 weeks. At 4 weeks, there were increases in BV/TV and parameters of bone formation, including mineralized surface, mineral apposition rate, and bone formation rate. In marrow cell cultures from the tibia, the number of alkaline phosphatase+ colony forming units-fibroblastic and the area of mineralized nodule formation in climbing mice were increased, and the number of osteoclast-like TRACP+ multinucleated cells was lower at 2 weeks. At 4 weeks, these parameters recovered to the levels of the ground controls. Conclusion: Our results indicate that climbing increased trabecular bone volume and reduced bone resorption, with a subsequent increase in bone formation. Intermittent climbing downregulates marrow osteoclastogenic cells and upregulates osteogenic cells initially, but further exercise seemed to desensitize them. Cortical envelopes were enlarged earlier, but the response seems to differ from trabecular bone. [source]


Bone Strength at Clinically Relevant Sites Displays Substantial Heterogeneity and Is Best Predicted From Site-Specific Bone Densitometry

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2002
Felix Eckstein Ph.D.
Abstract In this study we test the hypotheses that mechanical bone strength in elderly individuals displays substantial heterogeneity among clinically relevant skeletal sites, that ex situ dual-energy X-ray absorptiometry (DXA) provides better estimates of bone strength than in situ DXA, but that a site-specific approach of bone densitometry is nevertheless superior for optimal prediction of bone failure under in situ conditions. DXA measurements were obtained of the lumbar spine, the left femur, the left radius, and the total body in 110 human cadavers (age, 80.6 ± 10.5 years; 72 female, 38 male), including the skin and soft tissues. The bones were then excised, spinal and femoral DXA being repeated ex situ. Mechanical failure tests were performed on thoracic vertebra 10 and lumbar vertebra 3 (compressive loading of a functional unit), the left and right femur (side impact and vertical loading configuration), and the left and right distal radius (fall configuration, axial compression, and 3-point-bending). The failure loads displayed only very moderate correlation among sites (r = 0.39 to 0.63). Ex situ DXA displayed slightly higher correlations with failure loads compared with those of in situ DXA, but the differences were not significant and relatively small. Under in situ conditions, DXA predicted 50-60% of the variability in bone failure loads at identical (or closely adjacent) sites, but only around 20-35% at distant sites, advocating a site-specific approach of densitometry. These data suggest that mechanical competence in the elderly is governed by strong regional variation, and that its loss in osteoporosis may not represent a strictly systemic process. [source]


A new animal model for bone atrophic nonunion: Fixation by external fixator

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 12 2008
Katharina Kaspar
Abstract A new small animal model of bone atrophic nonunion was established for investigating the process of bone regeneration by performing cauterization of the periosteum, removal of the local bone marrow, and stabilization with external fixation. The model allows the creation of an atrophic nonunion without the need for a critical size defect. Furthermore, it provides reproducible, well-defined mechanical conditions and minimized physical interference of the implant with the biological processes in the healing zone. Eighty adult Sprague-Dawley rats received an osteotomy of the left femur, stabilized with an external fixator. In half of the animals, the periosteum proximal and distal to the osteotomy was destroyed by cauterization and the adjacent bone marrow was removed (nonunion group). At 2 and 8 weeks after surgery, radiological, biomechanical, histological, and histomorphometrical analyses showed a typical physiological healing in the control group, while the nonunion group was characterized by resorption of the bone ends with some callus formation distant to the osteotomy. At both time points, the callus was composed of significantly less bone and significantly more connective tissue (p,<,0.001). In addition, the torsional strength of the osteotomized femur was significantly less in the nonunion group than in the control group, which was comparable to that of the intact femur (p,<,0.001). In conclusion, the present model allows the induction of an atrophic nonunion without the need of a critical size defect. It is reproducible, provides standardized biomechanical conditions, and allows minimized interaction of the implant with the healing zone. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res [source]


Efficacy of the injectable calcium phosphate ceramics suspensions containing magnesium, zinc and fluoride on the bone mineral deficiency in ovariectomized rats

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 1 2008
Makoto Otsuka
Abstract The purpose of this study was to evaluate the therapeutic efficacy of a new calcium phosphate (CaP)-based formulation in improving the bone mineral deficiency in ovariectomized (OVX) rats. The ions release experiments for CaP preparations (G2: 0.46% Mg, 5.78% Zn, and 2.5% F; G3:3.1% Mg, 0.03% Zn, and 3.01% F; G4: 1.25% Mg, 1.77% Zn, 1.35% F) and of a Zn-TCP (G1: 6.17% Zn) powders, the initial Mg and Zn ion release rates of MZF-CaPs were performed in acetate buffer at pH 4.5 (37°C). Wistar rats were divided into six groups including a normal (not OVX) group (GN) and a control, OVX group (GC). Rats in groups GC, G1, G2, G3, G4 were OVX. Suspensions consisting of CaP preparations (G2, G3, G4) and of a Zn-TCP (G1) powders were injected in the right thighs of OVX rats in all groups except for GN and GC, once a week for 4 weeks. GN and GC rats were injected with saline solutions. Plasma was analyzed for Zn land alkaline phosphatase levels. The bone mineral density (BMD) was measured using DEXA and the bone (femur) strength determined using three-point-bending analysis. G1 and G2 groups showed high plasma Zn levels. The area under the curve of plasma Zn was significantly greater in the G1, G2, and GN groups than in the G3, G4, and GC groups (p,<,0.05). The BMD and bone mechanical strength of the right femur were significantly higher in the G1, G2, G3, and G4 groups than GC group on day 28. The right femur had significantly greater BMD and bone mechanical strength than the left femur in G1, G2, G3, and G4 groups. However, there was no significant difference in the BMD of the right femur between the G1, G2, G3, and G4 groups. Results indicate that the new injectable CaP formulations are effective in improving bone properties of OVX rats and may be useful in osteoporosis therapy. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:421,432, 2008 [source]


Use of a retrograde femoral nail in a patient with McCune,Albright syndrome

ANZ JOURNAL OF SURGERY, Issue 12 2003
John D. Garvan
McCune,Albright Syndrome is a rare condition characterized by endocrine abnormalities, precocious puberty, pigmented skin lesions and polyostotic fibrous dysplasia with consequent fractures and limb deformity. Patients with this syndrome might have had multiple operations on a limb and might also have extensive internal fixation in-situ. We review the case of a 41-year-old woman with McCune,Albright syndrome, who presented with a pathological fracture of her left femur below a long plate and screws. Our management of this challenging problem included the use of a retrograde femoral nail, which, because of the need to retain pre-existing internal fixation, had to be locked proximally through a hole in a femoral plate. This technique, combined with reaming, and thus bone grafting of the fracture, and also perioperative infusions of pamidronate, allowed an early recovery and return to premorbid function for the patient. In the present study we detail our technique and discuss its advantages over other possible methods of treatment. [source]


A Basal Titanosauriform from the Early Cretaceous of Guangxi, China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2006
MO Jinyou
Abstract, Based on a partial postcranial skeleton collected from the Lower Cretaceous Napai Formation of Guangxi, China, we erect a new sauropod taxon, Fusuisaurus zhaoi gen. et sp. nov. The holotype specimen consists of the left ilium, left pubis, anterior caudals, most of the dorsal ribs and distal end of the left femur. Fusuisaurus zhaoi is diagnosed by a unique combination of character states among the known sauropods. It displays several synapomorphies of Titanosauriformes but lacks many derived features seen in other titanosauriforms, suggesting that the new taxon represents the basalmost known titanosauriform and providing new evidence that Titanosauriformes originated from Asia. A size comparison suggests that Fusuisaurus zhaoi is among the largest Early Cretaceous sauropods, providing an important addition to the Early Cretaceous Chinese sauropod diversity. [source]