Leaf N (leaf + n)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Phosphorus and the regulation of nodulation in the actinorhizal symbiosis between Discaria trinervis (Rhamnaceae) and Frankia BCU110501

NEW PHYTOLOGIST, Issue 1 2002
Claudio Valverde
Summary ,,After nitrogen (N), phosphorus (P) is the nutrient that most limits plant productivity. The role of P on growth and root nodulation was studied in the actinorhizal symbiosis between Discaria trinervis and Frankia, an intercellular infected N2,fixing association. ,,Growth, nodulation and nutrient content (N and P) were analysed in symbiotic plants receiving different supplies of P in nutrient solutions. The relative requirement of P for nodulation was analysed in P-deficient plants. ,,Nodule initiation was less impaired than general plant growth by low P. However, low P impaired nodule growth to a greater extent than plant growth. The proportion of nodule biomass, although not the number of nodules per plant, was stimulated by P supply. Autoregulation of nodulation was not affected by P. Use of N was limited by availability of P. Reserves of P in seeds were enough for the seedling to establish nodules. However nodule (and plant) growth was limited in the absence of exogenous P. ,,It is possible that P interacts with the feedback control of nodule growth that is associated with the plant demand for N. Leaf N : P ratio is negatively correlated with the proportion of nodule tissue. [source]


CONTRASTING PLANT PHYSIOLOGICAL ADAPTATION TO CLIMATE IN THE NATIVE AND INTRODUCED RANGE OF HYPERICUM PERFORATUM

EVOLUTION, Issue 8 2007
John L. Maron
How introduced plants, which may be locally adapted to specific climatic conditions in their native range, cope with the new abiotic conditions that they encounter as exotics is not well understood. In particular, it is unclear what role plasticity versus adaptive evolution plays in enabling exotics to persist under new environmental circumstances in the introduced range. We determined the extent to which native and introduced populations of St. John's Wort (Hypericum perforatum) are genetically differentiated with respect to leaf-level morphological and physiological traits that allow plants to tolerate different climatic conditions. In common gardens in Washington and Spain, and in a greenhouse, we examined clinal variation in percent leaf nitrogen and carbon, leaf ,13C values (as an integrative measure of water use efficiency), specific leaf area (SLA), root and shoot biomass, root/shoot ratio, total leaf area, and leaf area ratio (LAR). As well, we determined whether native European H. perforatum experienced directional selection on leaf-level traits in the introduced range and we compared, across gardens, levels of plasticity in these traits. In field gardens in both Washington and Spain, native populations formed latitudinal clines in percent leaf N. In the greenhouse, native populations formed latitudinal clines in root and shoot biomass and total leaf area, and in the Washington garden only, native populations also exhibited latitudinal clines in percent leaf C and leaf ,13C. Traits that failed to show consistent latitudinal clines instead exhibited significant phenotypic plasticity. Introduced St. John's Wort populations also formed significant or marginally significant latitudinal clines in percent leaf N in Washington and Spain, percent leaf C in Washington, and in root biomass and total leaf area in the greenhouse. In the Washington common garden, there was strong directional selection among European populations for higher percent leaf N and leaf ,13C, but no selection on any other measured trait. The presence of convergent, genetically based latitudinal clines between native and introduced H. perforatum, together with previously published molecular data, suggest that native and exotic genotypes have independently adapted to a broad-scale variation in climate that varies with latitude. [source]


Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches

FUNCTIONAL ECOLOGY, Issue 4 2010
Jennifer S. Powers
Summary 1.,One way to simplify the high taxonomic diversity of plant species in vegetation models is to place species into groups based on shared, dominant traits. Many studies have suggested that morphological and physiological traits of tropical dry forest tree species vary with leaf habit (i.e. leaves from evergreen, deciduous or semi-deciduous species) and thus this characteristic may serve as a useful way to distinguish ecologically meaningful functional types. 2.,In this study we examine whether 10 plant traits vary with leaf habit in replicated leaves and individual trees of 87 species from a tropical dry forest in Costa Rica. We also looked for evidence of phylogenetic conservatism, i.e. closely related species sharing similar trait values compared to more distantly related taxa. 3.,While some of the traits varied within and among individual trees of the same species, interspecific variation accounted for 57,83% of the variance among samples. Four traits in addition to leaf habit showed evidence of phylogenetic conservatism, but these results were strongly dependent on the inclusion of the 18 species of legumes (Fabaceae) in our dataset. Contrary to our predictions, none of the traits we measured differed among leaf habits. However, five traits (wood density, leaf C, leaf N, N/P and C/N) varied significantly between legumes and other functional types. Furthermore, when all high-nitrogen non-legume taxa were compared to the high-nitrogen legumes, six traits excluding leaf N differed significantly, indicating that legumes are functionally different from other tree species beyond high N concentrations. Similarly, the 18 legume taxa (which all have compound leaves) also differed from other compound-leaved species for six traits, thus leaf type does not explain these patterns. 4.,Our main conclusions are that (i) a plant functional type classification based on leaf habit alone has little utility in the tropical dry forest we studied, and (ii) legumes have a different suite of traits including high leaf carbon and wood density in addition to high leaf nitrogen. Whether this result generalizes to other tropical forests is unknown, but merits future research due to the consequences of these traits for carbon storage and ecosystem processes. [source]


Shifts in leaf N : P ratio during resorption reflect soil P in temperate rainforest

FUNCTIONAL ECOLOGY, Issue 4 2008
Sarah J. Richardson
Summary 1Large-scale syntheses of leaf and litter N and P concentrations have demonstrated that leaf and litter N : P ratios both decline with latitude, that litter N : P ratios are generally greater than those of fresh leaves, and that the difference between these two ratios increases towards the tropics. These patterns have been ascribed to either a direct effect of temperature on plant growth rates and leaf-level physiology, or a decline in soil P towards the tropics. We test the hypothesis that global patterns of leaf and litter N : P ratios reflect a soil-P gradient by examining leaf and litter N : P in all species from a temperate rainforest along a soil-P gradient. 2The soil P gradient followed a toposequence of 20 plots. There was > 50-fold variation in soil total P from ridges (23,136 mg kg,1), through faces and terraces (32,744 mg kg,1), to gullies (440,1214 mg kg,1). 3The N : P ratios of leaves and litter both declined as soil total P increased, and the N : P ratio of litter was greater than that of fresh leaves. The difference between litter N : P and fresh leaf N : P declined with increasing soil total P supporting the hypothesis that global patterns of N : P ratios reflect gradients of soil P. 4Compositional turnover with soil P partly contributed to the total plant community leaf and litter nutrient concentration responses. However, consistent within-species responses pointed to a soil-based mechanism for determining responses by the total plant community. 5Comparisons of our litter data to global data sets suggest that the vegetation was well adapted to low soil nutrient concentrations with 37% of litter N and 24% of litter P samples being below published thresholds for highly proficient nutrient resorption. 6The range of leaf N and leaf P concentrations at our site captured a large portion of the range reported in global leaf trait data sets. 7Highly proficient P resorption was responsible for the divergence in leaf and litter N : P ratios on P-poor soils. These results emphasize the significance of proficient nutrient resorption as an advantageous plant trait for nutrient conservation on P-poor soils. [source]


Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats

FUNCTIONAL ECOLOGY, Issue 4 2001
I. J. Wright
Summary 1,Relationships were examined among photosynthetic capacity (Amass and Aarea), foliar dark respiration rate (Rd-mass and Rd-area), stomatal conductance to water (Gs), specific leaf area (SLA), and leaf nitrogen (N) and phosphorus (P) across 79 perennial species occurring at four sites with contrasting rainfall levels and soil nutrients in eastern Australia. We hypothesized that the slope of log,log ,scaling' relationships between these traits would be positive and would not differ between sites, although slope elevations might shift between habitat types. 2,Amass, Rd-mass, SLA, Nmass and Pmass were positively associated in common slopes fitted across sites or rainfall zones, although rather weakly within individual sites in some cases. The relationships between Amass (and Rd-mass) with each of Nmass and SLA were partially independent of each other, with Amass (or Rd-mass) increasing with SLA at a given Nmass, or with Nmass at a given SLA (only weakly in the case of Amass). These results improve the quantification and extend the generalization of reported patterns to floras largely unlike those studied previously, with the additional contribution of including phosphorus data. 3,Species from drier sites differed in several important respects. They had (i) higher leaf N and P (per dry mass or area); (ii) lower photosynthetic capacity at a given leaf N or P; (iii) higher Rd-mass at a given SLA or Amass; and (iv) lower Gs at a given Aarea (implying lower internal CO2 concentration). 4,These trends can be interpreted as part of a previously undocumented water conservation strategy in species from dry habitats. By investing heavily in photosynthetic enzymes, a larger drawdown of internal CO2 concentration is achieved, and a given photosynthetic rate is possible at a lower stomatal conductance. Transpirational water use is similar, however, due to the lower-humidity air in dry sites. The benefit of the strategy is that dry-site species reduce water loss at a given Aarea, down to levels similar to wet-site species, despite occurring in lower-humidity environments. The cost of high leaf N is reflected in higher dark respiration rates and, presumably, additional costs incurred by N acquisition and increased herbivory risk. [source]


Leaf dark respiration as a function of canopy position in Nothofagus fusca trees grown at ambient and elevated CO2 partial pressures for 5 years

FUNCTIONAL ECOLOGY, Issue 4 2001
K. L. Griffin
Summary 1,Mass-based and area-based rates of respiration, leaf nitrogen content, leaf total protein content, non-structural carbohydrates and leaf mass per unit area (LMA) all decreased with depth in the canopy of Nothofagus fusca (Hook. F.) Oerst. (Red beech) trees grown for 5 years at ambient (36 Pa) or elevated (66 Pa) CO2 partial pressures. 2Elevated CO2 partial pressure had a strong effect on dark respiration, decreasing both mass-based and area-based rates at all canopy positions, but had little or no effect on leaf physical and biochemical properties. 3Leaf sugars, starch, protein, N and LMA were all correlated with respiration rate, and are therefore strong predictors of area-based dark respiration rates. The y axis intercept of regressions of respiration rate on mean leaf N, protein, starch and LMA was lower for plants grown at elevated compared to ambient CO2 partial pressures because of the differential effect of growth at elevated CO2 partial pressure on leaf gas-exchange, chemical and physical characteristics. 4,The lower respiration rates for leaves from trees grown at elevated CO2 partial pressure resulted in a significant increase in the ratio of light-saturated net photosynthesis to respiration, increasing the potential carbon-use efficiency of these leaves. [source]


The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance

FUNCTIONAL ECOLOGY, Issue 1 2000
T. Rijkers
Abstract 1.,Light-saturated rate of photosynthesis (Amax), nitrogen (N), chlorophyll (Chl) content and leaf mass per unit area (LMA) were measured in leaves of trees of different heights along a natural light gradient in a French Guiana rain forest. The following four species, arranged in order from most shade-tolerant to pioneer, were studied: Duguetia surinamensis, Vouacapoua americana, Dicorynia guianensis and Goupia glabra. Light availability of trees was estimated using hemispherical photography. 2.,The pioneer species Goupia had the lowest LMA and leaf N on both an area and mass basis, whereas Duguetia had the highest values. In general, leaf variables of Vouacapoua and Dicorynia tended to be intermediates. Because Amax/area was similar among species, Goupia showed both a much higher light-saturated photosynthetic nitrogen-use efficiency (PNUEmax) and Amax/mass. Leaves of Vouacapoua demonstrated the greatest plasticity in Amax/area, particularly in small saplings. 3.,A distinction could be made between the effect of tree height and light availability on the structural, i.e. LMA, and photosynthetic leaf characteristics of all four species. The direction and magnitude of the variation in variables were similar among species. 4.,LMA was the key variable that mainly determined variation in the other leaf variables along tree height and light availability gradients, with the exception of changes in chlorophyll concentration. Amax/area, N/area, LMA and stomatal conductance to water vapour (gs) increased, whereas Chl/mass decreased, with both increasing tree height and canopy openness. Amax/mass, PNUEmax and Amax/Chl increased with increasing openness only. N/mass and Chl/area were independent of tree height and openness, except for small saplings of Goupia which had a much lower Chl/area. [source]


Effects of temperature and fertilization on nitrogen cycling and community composition of an urban lawn

GLOBAL CHANGE BIOLOGY, Issue 9 2008
NEETA S. BIJOOR
Abstract We examined the influence of temperature and management practices on the nitrogen (N) cycling of turfgrass, the largest irrigated crop in the United States. We measured nitrous oxide (N2O) fluxes, and plant and soil N content and isotopic composition with a manipulative experiment of temperature and fertilizer application. Infrared lamps were used to increase surface temperature by 3.51.3 C on average and control and heated plots were split into high and low fertilizer treatments. The N2O fluxes increased following fertilizer application and were also directly related to soil moisture. There was a positive effect of warming on N2O fluxes. Soils in the heated plots were enriched in nitrogen isotope ratio (,15N) relative to control plots, consistent with greater gaseous losses of N. For all treatments, C4 plant C/N ratio was negatively correlated with plant ,15N, suggesting that low leaf N was associated with the use of isotopically depleted N sources such as mineralized organic matter. A significant and unexpected result was a large, rapid increase in the proportion of C4 plants in the heated plots relative to control plots, as measured by the carbon isotope ratio (,13C) of total harvested aboveground biomass. The C4 plant biomass was dominated by crabgrass, a common weed in C3 fescue lawns. Our results suggest that an increase in temperature caused by climate change as well as the urban heat island effect may result in increases in N2O emissions from fertilized urban lawns. In addition, warming may exacerbate weed invasions, which may require more intensive management, e.g. herbicide application, to manage species composition. [source]


Host-specific aphid population responses to elevated CO2 and increased N availability

GLOBAL CHANGE BIOLOGY, Issue 11 2005
Erika A. Sudderth
Abstract Sap-feeding insects such as aphids are the only insect herbivores that show positive responses to elevated CO2. Recent models predict that increased nitrogen will increase aphid population size under elevated CO2, but few experiments have tested this idea empirically. To determine whether soil nitrogen (N) availability modifies aphid responses to elevated CO2, we tested the performance of Macrosiphum euphorbiae feeding on two host plants; a C3 plant (Solanum dulcamara), and a C4 plant (Amaranthus viridis). We expected aphid population size to increase on plants in elevated CO2, with the degree of increase depending on the N availability. We found a significant CO2 N interaction for the response of population size for M. euphorbiae feeding on S. dulcamara: aphids feeding on plants grown in ambient CO2, low N conditions increased in response to either high N availability or elevated CO2. No population size responses were observed for aphids infesting A. viridis. Elevated CO2 increased plant biomass, specific leaf weight, and C : N ratios of the C3 plant, S. dulcamara but did not affect the C4 plant, A. viridis. Increased N fertilization significantly increased plant biomass, leaf area, and the weight : height ratio in both experiments. Elevated CO2 decreased leaf N in S. dulcamara and had no effect on A. viridis, while higher N availability increased leaf N in A. viridis and had no effect in S. dulcamara. Aphid infestation only affected the weight : height ratio of S. dulcamara. We only observed an increase in aphid population size in response to elevated CO2 or increased N availability for aphids feeding on S. dulcamara grown under low N conditions. There appears to be a maximum population growth rate that M. euphorbiae aphids can attain, and we suggest that this response is because of intrinsic limits on development time and fecundity. [source]


Acclimation of photosynthesis and respiration to elevated atmospheric CO2 in two Scrub Oaks

GLOBAL CHANGE BIOLOGY, Issue 4 2002
Graham J. Hymus
Abstract For two species of oak, we determined whether increasing atmospheric CO2 concentration (Ca) would decrease leaf mitochondrial respiration (R) directly, or indirectly owing to their growth in elevated Ca, or both. In particular, we tested whether acclimatory decreases in leaf-Rubisco content in elevated Ca would decrease R associated with its maintenance. This hypothesis was tested in summer 2000 on sun and shade leaves of Quercus myrtifolia Willd. and Quercus geminata Small. We also measured R on five occasions between summer 1999 and 2000 on leaves of Q. myrtifolia. The oaks were grown in the field for 4 years, in either current ambient or elevated (current ambient + 350 mol mol,1) Ca, in open-top chambers (OTCs). For Q. myrtifolia, an increase in Ca from 360 to 710 mol mol,1 had no direct effect on R at any time during the year. In April 1999, R in young Q. myrtifolia leaves was significantly higher in elevated Ca,the only evidence for an indirect effect of growth in elevated Ca. Leaf R was significantly correlated with leaf nitrogen (N) concentration for the sun and shade leaves of both the species of oak. Acclimation of photosynthesis in elevated Ca significantly reduced maximum RuBP-saturated carboxylation capacity (Vc max) for both the sun and shade leaves of only Q. geminata. However, we estimated that only 11,12% of total leaf N was invested in Rubisco; consequently, acclimation in this plant resulted in a small effect on N and an insignificant effect on R. In this study measurements of respiration and photosynthesis were made on material removed from the field; this procedure had no effect on gas exchange properties. The findings of this study were applicable to R expressed either per unit leaf area or unit dry weight, and did not support the hypothesis that elevated Ca decreases R directly, or indirectly owing to acclimatory decreases in Rubisco content. [source]


A global study of relationships between leaf traits, climate and soil measures of nutrient fertility

GLOBAL ECOLOGY, Issue 2 2009
Jenny C. Ordoez
ABSTRACT Aim This first global quantification of the relationship between leaf traits and soil nutrient fertility reflects the trade-off between growth and nutrient conservation. The power of soils versus climate in predicting leaf trait values is assessed in bivariate and multivariate analyses and is compared with the distribution of growth forms (as a discrete classification of vegetation) across gradients of soil fertility and climate. Location All continents except for Antarctica. Methods Data on specific leaf area (SLA), leaf N concentration (LNC), leaf P concentration (LPC) and leaf N:P were collected for 474 species distributed across 99 sites (809 records), together with abiotic information from each study site. Individual and combined effects of soils and climate on leaf traits were quantified using maximum likelihood methods. Differences in occurrence of growth form across soil fertility and climate were determined by one-way ANOVA. Results There was a consistent increase in SLA, LNC and LPC with increasing soil fertility. SLA was related to proxies of N supply, LNC to both soil total N and P and LPC was only related to proxies of P supply. Soil nutrient measures explained more variance in leaf traits among sites than climate in bivariate analysis. Multivariate analysis showed that climate interacted with soil nutrients for SLA and area-based LNC. Mass-based LNC and LPC were determined mostly by soil fertility, but soil P was highly correlated to precipitation. Relationships of leaf traits to soil nutrients were stronger than those of growth form versus soil nutrients. In contrast, climate determined distribution of growth form more strongly than it did leaf traits. Main conclusions We provide the first global quantification of the trade-off between traits associated with growth and resource conservation ,strategies' in relation to soil fertility. Precipitation but not temperature affected this trade-off. Continuous leaf traits might be better predictors of plant responses to nutrient supply than growth form, but growth forms reflect important aspects of plant species distribution with climate. [source]


Magnitude of nighttime transpiration does not affect plant growth or nutrition in well-watered Arabidopsis

PHYSIOLOGIA PLANTARUM, Issue 3 2009
Mairgareth A. Christman
Significant water loss occurs throughout the night via partially open stomata in many C3 and C4 plant species. Although apparently wasteful in terms of water use, nighttime transpiration (Enight) is hypothesized to benefit plants by enhancing nutrient supply. We tested the hypothesis that plants with greater Enight would have improved plant nutrient status and greater fitness, estimated as pre-bolting biomass, for Arabidopsis thaliana. Two very different levels of Enight were generated in plants by exposing them to high vs low nighttime leaf-to-air vapor pressure deficits (VPDleaf) in controlled environment chambers. An assessment of responses of nighttime leaf conductance (gnight) to VPDleaf indicated that Enight differed by at least 80% between the treatments. This large difference in Enight, imposed over the entire vegetative growth phase of Arabidopsis, had no effect on leaf nutrient content (N, Ca, K) or pre-bolting rosette biomass. The lack of response to differences in Enight held true for both a high and a low nitrogen (N) treatment, even though the low N treatment decreased leaf N and biomass by 40,60%. The N treatment had no effect on gnight. Thus, higher Enight did not provide a nutrient or growth benefit to Arabidopsis, even when the plants were N-limited. [source]


The application of ethephon (an ethylene releaser) increases growth, photosynthesis and nitrogen accumulation in mustard (Brassica juncea L.) under high nitrogen levels

PLANT BIOLOGY, Issue 5 2008
N. A. Khan
Abstract Ethephon (2-chloroethyl phosphonic acid), an ethylene-releasing compound, influences growth and photosynthesis of mustard (Brassica juncea L. Czern & Coss.). We show the effect of nitrogen availability on ethylene evolution and how this affects growth, photosynthesis and nitrogen accumulation. Ethylene evolution in the control with low N (100 mg N kg,1 soil) was two-times higher than with high N (200 mg N kg,1 soil). The application of 100,400 ,ll,1 ethephon post-flowering, i.e. 60 days after sowing, on plants receiving low or high N further increased ethylene evolution. Leaf area, relative growth rate (RGR), photosynthesis, leaf nitrate reductase (NR) activity and leaf N reached a maximum with application of 200 ,ll,1 ethephon and high N. The results suggest that the application of ethephon influences growth, photosynthesis and N accumulation, depending on the amount of nitrogen in the soil. [source]


Impact of nitrate supply in C and N assimilation in the parasitic plant Striga hermonthica (Del.) Benth (Scrophulariaceae) and its host Sorghum bicolor L.

PLANT CELL & ENVIRONMENT, Issue 4 2006
P. SIMIER
ABSTRACT The threshold of tolerance for nitrate of the parasitic weed Striga hermonthica (Del.) Benth and the host plant Sorghum bicolor L. was determined by estimating the impact of increasing nitrate loads on plant growth and various parameters of C and N assimilation. Nitrate supply improved chlorophyll (Chl) content and photosystem II (PSII) photochemistry of infected S. bicolor that, in comparison to S. hermonthica, displayed a low imbalance between C and N assimilation when nitrate was supplied up to 1500 mg N per plant. Indeed, nitrate supplies increased strongly the leaf N:C ratio of the parasite. The higher nitrate load induced strong accumulation of nitrate, nitrite and ammonium, and consequently the death of S. hermonthica. Nevertheless, lower nitrate loads (up to 500 mg N per S. bicolor in this study) promoted leaf expansion, PSII photochemistry and N metabolism of S. hermonthica mature (M) plants, as attested by the significant rise in soluble protein and free amino-acid contents. Following these N supplies, the nitrate tolerance of S. hermonthica was correlated with an increase in PSII activity and a high incorporation of N excess into asparagine. This confirmed the central role of asparagine in the N metabolism of S. hermonthica, although this detoxification pathway was insufficient to limit ammonium accumulation under higher nitrate loads. [source]


Physiological and anatomical changes during the early ontogeny of the heteroblastic bromeliad, Vriesea sanguinolenta, do not concur with the morphological change from atmospheric to tank form

PLANT CELL & ENVIRONMENT, Issue 11 2004
G. ZOTZ
ABSTRACT Two distinct morphological forms characterize the ontogeny of many epiphytic bromeliads. Smaller plants exhibit an atmospheric habit, while larger plants form water-impounding tanks. The study of the functional significance of heteroblasty in epiphytes is severely hampered by considerable size-related variation in morphological, anatomical and physiological parameters. To overcome this problem, plants of varying size of both atmospheric and tank form were included in the present study with Vriesea sanguinolenta. The results show that virtually all morphological, anatomical and physiological characteristics vary during ontogeny, but changes were rarely directly related to the step change in gross morphology. Changes were either: (1) gradual from smallest atmospheric to small tank (e.g. leaf divergence angles, reduction in photosystem II efficiency during drought, speed of recovery after drought); (2) there was no change between atmospheric and small tank, but a gradual or step change within the tank form (stomatal density, relationship of leaf N and specific leaf area); or (3) developmental patterns were more complicated with decreases and increases during ontogeny (photosynthetic capacity, carbon isotope ratios, abscisic acid levels during drought). Although the comparisons between ontogenetic phases were always confounded by size differences, a hypothetical small tank plant is expected to suffer higher water loss than a real atmospheric, whereas a hypothetical, large atmospheric plant would show reduced access to resources, such as nutrients, in comparison with the real tank. The present results are consistent with the notion of heteroblasty as an adaptation of early ontogenetic stages to drought, but highlight that size-related variation greatly modifies any difference directly associated with the step change from atmospheric to tank. [source]


Photosynthesis, light and nitrogen relationships in a young deciduous forest canopy under open-air CO2 enrichment

PLANT CELL & ENVIRONMENT, Issue 12 2001
Y. Takeuchi
Abstract Leaf photosynthesis (Ps), nitrogen (N) and light environment were measured on Populus tremuloides trees in a developing canopy under free-air CO2 enrichment in Wisconsin, USA. After 2 years of growth, the trees averaged 15 and 16 m tall under ambient and elevated CO2, respectively, at the beginning of the study period in 1999. They grew to 26 and 29 m, respectively, by the end of the 1999 growing season. Daily integrated photon flux from cloud-free days (PPFDday,sat) around the lowermost branches was 168 08 and 87 02% of values at the top for the ambient and elevated CO2 canopies, respectively. Elevated CO2 significantly decreased leaf N on a mass, but not on an area, basis. N per unit leaf area was related linearly to PPFDday,sat throughout the canopies, and elevated CO2 did not affect that relationship. Leaf Ps light-response curves responded differently to elevated CO2, depending upon canopy position. Elevated CO2 increased Pssat only in the upper (unshaded) canopy, whereas characteristics that would favour photosynthesis in shade were unaffected by elevated CO2. Consequently, estimated daily integrated Ps on cloud-free days (Psday,sat) was stimulated by elevated CO2 only in the upper canopy. Psday,sat of the lowermost branches was actually lower with elevated CO2 because of the darker light environment. The lack of CO2 stimulation at the mid- and lower canopy was probably related to significant down-regulation of photosynthetic capacity; there was no down-regulation of Ps in the upper canopy. The relationship between Psday,sat and leaf N indicated that N was not optimally allocated within the canopy in a manner that would maximize whole-canopy Ps or photosynthetic N use efficiency. Elevated CO2 had no effect on the optimization of canopy N allocation. [source]


Effects of timing and rate of N supply on leaf nitrogen status, grape yield and juice composition from Shiraz grapevines grafted to one of three different rootstocks

AUSTRALIAN JOURNAL OF GRAPE AND WINE RESEARCH, Issue 1 2007
B.P. HOLZAPFEL
Abstract Yeast cells have a minimum N requirement to ferment a must through to dryness, so that grape N content (hence must N) becomes critical in meeting that prerequisite. Viticultural practices aimed at meeting that N requirement are of special relevance because interactions between rootstock and vineyard nitrogen supply strongly influence scion mineral nutrient status as well as shoot vigour, and via those processes, fruit composition. Such outcomes were investigated in a field trial involving Shiraz on three rootstocks viz. Teleki 5C, Schwarzmann and Ramsey. Five N supply regimes, varying from 0 to 80 kg/(haseason), were imposed through a drip-irrigation system during two periods (either flowering to veraison, or post-harvest to leaf-fall, or both) over three successive growing seasons. Post-harvest N supply increased scion leaf N and nitrate N concentrations at flowering for vines on Teleki 5C and Schwarzmann. By veraison, N recently applied in the flowering to veraison period elevated these indicators of N status in all vines on all rootstocks. Grape yields from vines on Teleki 5C and Schwarzmann were elevated by N supply after harvest, whereas juice soluble solids levels were lowered. Free amino acids in Shiraz juice were dominated by non-assimilable N, amounting to about 50% or more of the total free amino-N in the juice. Increasing N supply increased free amino acid concentrations in the juice of berries from vines on all rootstocks, but only vines on Schwarzmann derived any benefit from N supplied after harvest. The highest concentrations of free amino acids were measured in the berries from vines on Schwarzmann receiving 80 kg N/(ha.season). Of immediate practical relevance for N management of Shiraz grapevines on either Teleki 5C or Ramsey rootstocks, the minimum value for assimilable free amino-N concentration required to ferment a must through to dryness was not achieved if vineyard N application was limited to the post-harvest period. [source]