Home About us Contact | |||
Leaf Habit (leaf + habit)
Selected AbstractsPlant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approachesFUNCTIONAL ECOLOGY, Issue 4 2010Jennifer S. Powers Summary 1.,One way to simplify the high taxonomic diversity of plant species in vegetation models is to place species into groups based on shared, dominant traits. Many studies have suggested that morphological and physiological traits of tropical dry forest tree species vary with leaf habit (i.e. leaves from evergreen, deciduous or semi-deciduous species) and thus this characteristic may serve as a useful way to distinguish ecologically meaningful functional types. 2.,In this study we examine whether 10 plant traits vary with leaf habit in replicated leaves and individual trees of 87 species from a tropical dry forest in Costa Rica. We also looked for evidence of phylogenetic conservatism, i.e. closely related species sharing similar trait values compared to more distantly related taxa. 3.,While some of the traits varied within and among individual trees of the same species, interspecific variation accounted for 57,83% of the variance among samples. Four traits in addition to leaf habit showed evidence of phylogenetic conservatism, but these results were strongly dependent on the inclusion of the 18 species of legumes (Fabaceae) in our dataset. Contrary to our predictions, none of the traits we measured differed among leaf habits. However, five traits (wood density, leaf C, leaf N, N/P and C/N) varied significantly between legumes and other functional types. Furthermore, when all high-nitrogen non-legume taxa were compared to the high-nitrogen legumes, six traits excluding leaf N differed significantly, indicating that legumes are functionally different from other tree species beyond high N concentrations. Similarly, the 18 legume taxa (which all have compound leaves) also differed from other compound-leaved species for six traits, thus leaf type does not explain these patterns. 4.,Our main conclusions are that (i) a plant functional type classification based on leaf habit alone has little utility in the tropical dry forest we studied, and (ii) legumes have a different suite of traits including high leaf carbon and wood density in addition to high leaf nitrogen. Whether this result generalizes to other tropical forests is unknown, but merits future research due to the consequences of these traits for carbon storage and ecosystem processes. [source] Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitudeFUNCTIONAL ECOLOGY, Issue 4 2008Guoyong Li Summary 1The allometric scaling relationship between lamina and lamina support has rarely been examined, such that its significance to plant life-history strategies has not been fully explored and understood so far. We investigated the sizes of leaf lamina and petiole for 93 temperate broad-leaved woody species at two altitudes of a southwestern mountain, and analysed the scaling relationship in relation to leaf habit (evergreen vs. deciduous), leaf form (simple- vs. compound-leaved species), and habitat type (low vs. high altitude). 2Significant allometric scaling relationships were found between petiole mass and lamina mass, and between petiole mass and lamina area, with common slopes of 0·872 and 0·742, respectively, both significantly departed from the value of 1·0. The results of phylogenetic comparative analyses were in accordance with the observed positive scaling relationships. 3The evergreen species were found to have a greater petiole mass than the deciduous at a given lamina area; whilst a contrasting pattern was observed between lamina mass and petiole mass, in which the evergreens had a greater biomass allocation to lamina for the same petiole mass relative to the deciduous. 4The compound-leaved species were observed to be significantly greater in both lamina area and lamina support (including petioles, rachis and petiolules) than the simple-leaved species, whereas the former had a smaller lamina area or lamina mass at a given petiole mass than the latter. 5The plants from the high altitude had less lamina area at a given petiole investment compared to those from the lower altitude, likely due to the large mechanic and transporting requirements of petioles in the species at high altitude. 6Our results indicate that petioles serve as an adverse forcing on the maximization of lamina area and lamina biomass and that the allometric relationship between lamina and lamina support varies with leaf habit, leaf form and habitat. [source] Global trends in senesced-leaf nitrogen and phosphorusGLOBAL ECOLOGY, Issue 5 2009Zhiyou Yuan ABSTRACT Aim, Senesced-leaf litter plays an important role in the functioning of terrestrial ecosystems. While green-leaf nutrients have been reported to be affected by climatic factors at the global scale, the global patterns of senesced-leaf nutrients are not well understood. Location, Global. Methods, Here, bringing together a global dataset of senesced-leaf N and P spanning 1253 observations and 638 plant species at 365 sites and of associated mean climatic indices, we describe the world-wide trends in senesced-leaf N and P and their stoichiometric ratios. Results, Concentration of senesced-leaf N was highest in tropical forests, intermediate in boreal, temperate, and mediterranean forests and grasslands, and lowest in tundra, whereas P concentration was highest in grasslands, lowest in tropical forests and intermediate in other ecosystems. Tropical forests had the highest N : P and C : P ratios in senesced leaves. When all data were pooled, N concentration significantly increased, but senesced-leaf P concentration decreased with increasing mean annual temperature (MAT) and mean annual precipitation (MAP). The N : P and C : P ratios also increased with MAT and MAP, but C : N ratios decreased. Plant functional type (PFT), i.e. life-form (grass, herb, shrub or tree), phylogeny (angiosperm versus gymnosperm) and leaf habit (deciduous versus evergreen), affected senesced-leaf N, P, N : P, C : N and C : P with a ranking of senesced-leaf N from high to low: forbs , shrubs , trees > grasses, while the ranking of P was forbs , shrubs , trees < grasses. The climatic trends of senesced-leaf N and P and their stoichiometric ratios were similar between PFTs. Main conclusions, Globally, senesced-leaf N and P concentrations differed among ecosystem types, from tropical forest to tundra. Differences were significantly related to global climate variables such as MAT and MAP and also related to plant functional types. These results at the global scale suggest that nutrient feedback to soil through leaf senescence depends on both the climatic conditions and the plant composition of an ecosystem. [source] Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitatsPLANT CELL & ENVIRONMENT, Issue 12 2001J. Cavender-Bares Abstract We investigated the hydraulic properties in relation to soil moisture, leaf habit, and phylogenetic lineage of 17 species of oaks (Quercus) that occur sympatrically in northern central Florida (USA). Leaf area per shoot increased and Huber values (ratio of sapwood area to leaf area) decreased with increasing soil moisture of species' habitats. As a result, maximum hydraulic conductance and maximum transpiration were positively correlated with mean soil moisture when calculated on a sapwood area basis, but not when calculated on a leaf area basis. This reveals the important role that changes in allometry among closely related species can play in co-ordinating water transport capacity with soil water availability. There were significant differences in specific conductivity between species, but these differences were not explained by leaf habit or by evolutionary lineage. However, white oaks had significantly smaller average vessel diameters than red oaks or live oaks. Due to their lower Huber values, maximum leaf specific conductivity (KL) was higher in evergreen species than in deciduous species and higher in live oaks than in red oaks or white oaks. There were large differences between species and between evolutionary lineages in freeze,thaw-induced embolism. Deciduous species, on average, showed greater vulnerability to freezing than evergreen species. This result is strongly influenced by evolutionary lineage. Specifically, white oaks, which are all deciduous, had significantly higher vulnerability to freezing than live oaks (all evergreen) and red oaks, which include both evergreen and deciduous species. These results highlight the importance of taking evolutionary lineage into account in comparative physiological studies. [source] Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approachesFUNCTIONAL ECOLOGY, Issue 4 2010Jennifer S. Powers Summary 1.,One way to simplify the high taxonomic diversity of plant species in vegetation models is to place species into groups based on shared, dominant traits. Many studies have suggested that morphological and physiological traits of tropical dry forest tree species vary with leaf habit (i.e. leaves from evergreen, deciduous or semi-deciduous species) and thus this characteristic may serve as a useful way to distinguish ecologically meaningful functional types. 2.,In this study we examine whether 10 plant traits vary with leaf habit in replicated leaves and individual trees of 87 species from a tropical dry forest in Costa Rica. We also looked for evidence of phylogenetic conservatism, i.e. closely related species sharing similar trait values compared to more distantly related taxa. 3.,While some of the traits varied within and among individual trees of the same species, interspecific variation accounted for 57,83% of the variance among samples. Four traits in addition to leaf habit showed evidence of phylogenetic conservatism, but these results were strongly dependent on the inclusion of the 18 species of legumes (Fabaceae) in our dataset. Contrary to our predictions, none of the traits we measured differed among leaf habits. However, five traits (wood density, leaf C, leaf N, N/P and C/N) varied significantly between legumes and other functional types. Furthermore, when all high-nitrogen non-legume taxa were compared to the high-nitrogen legumes, six traits excluding leaf N differed significantly, indicating that legumes are functionally different from other tree species beyond high N concentrations. Similarly, the 18 legume taxa (which all have compound leaves) also differed from other compound-leaved species for six traits, thus leaf type does not explain these patterns. 4.,Our main conclusions are that (i) a plant functional type classification based on leaf habit alone has little utility in the tropical dry forest we studied, and (ii) legumes have a different suite of traits including high leaf carbon and wood density in addition to high leaf nitrogen. Whether this result generalizes to other tropical forests is unknown, but merits future research due to the consequences of these traits for carbon storage and ecosystem processes. [source] Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest treesPLANT CELL & ENVIRONMENT, Issue 3 2003T. J. BRODRIBB ABSTRACT This study examined the linkage between xylem vulnerability, stomatal response to leaf water potential (,L), and loss of leaf turgor in eight species of seasonally dry tropical forest trees. In order to maximize the potential variation in these traits species that exhibit a range of leaf habits and phenologies were selected. It was found that in all species stomatal conductance was responsive to ,L over a narrow range of water potentials, and that ,L inducing 50% stomatal closure was correlated with both the ,L inducing a 20% loss of xylem hydraulic conductivity and leaf water potential at turgor loss in all species. In contrast, there was no correlation between the water potential causing a 50% loss of conductivity in the stem xylem, and the water potential at stomatal closure (,SC) amongst species. It was concluded that although both leaf and xylem characters are correlated with the response of stomata to ,L, there is considerable flexibility in this linkage. The range of responses is discussed in terms of the differing leaf-loss strategies exhibited by these species. [source] |