Lentiviral Infection (lentiviral + infection)

Distribution by Scientific Domains


Selected Abstracts


Activation drives PD-1 expression during vaccine-specific proliferation and following lentiviral infection in macaques

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2008
David
Abstract Recent data supports that increased expression of PD-1, a negative regulator of immune function, is associated with T cell exhaustion during chronic viral infection. However, PD-1 expression during acute infection and vaccination has not been studied in great detail in primates. Here, we examine PD-1 expression on CD3+ T cells following DNA vaccination or lentiviral infection of macaques. Ex vivo peptide stimulation of PBMC from DNA-vaccinated uninfected macaques revealed a temporal increase in PD-1 expression in proliferating antigen-specific CD8+ T cells. Following the initial increase, PD-1 expression steadily declined as proliferation continued, with a concomitant increase in IFN-, secretion. Subsequent examination of PD-1 expression on T cells from uninfected and lentivirus-infected non-vaccinated macaques revealed a significant increase in PD-1 expression with lentiviral infection, consistent with previous reports. PD-1 expression was highest on cells with activated memory and effector phenotypes. Despite their decreased telomere length, PD-1hi T cell populations do not appear to have statistically significant uncapped telomeres, typically indicative of proliferative exhaustion, suggesting a different mechanistic regulation of proliferation by PD-1. Our data indicate that PD-1 expression is increased as a result of T cell activation during a primary immune response as well as during persistent immune activation in macaques. Supporting Information for this article is available at www.wiley-vch.de/contents/jc_2040/2008/37857_s.pdf [source]


E2F4 expression is required for cell cycle progression of normal intestinal crypt cells and colorectal cancer cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2009
Hugo Garneau
The generation of knock-out mice for E2F4 gene expression has suggested a role for this transcription factor in establishing and/or maintaining the intestinal crypt compartment. Having previously demonstrated that E2F4 is cytoplasmic in quiescent-differentiated cells but nuclear in growth factor-stimulated proliferative cells, the present study was aimed at determining the role of E2F4 in the control of human intestinal epithelial proliferation. Results herein demonstrate that lentiviral infection of an shRNA which specifically knocked-down E2F4 expression slowed down G1/S phase transition and the proliferation rate of normal human intestinal epithelial cells (HIEC) and of colon cancer cells. Protein expression of Cdk2, cyclins D1 and A, Cdc25A and c-myc was markedly down-regulated in shE2F4-expressing cells; by contrast, expression of the cell cycle inhibitors p21Cip/Waf and p27Kip1 was increased. In addition, the expression of many genes involved in DNA synthesis was down-regulated in shE2F4-expressing cells, whereas no modulation in E2F1 expression was observed. A decrease in E2F4 in colon cancer cell lines also resulted in a reduction in soft-agar growth capacity. Immunofluorescence experiments in human fetal intestine revealed that cells expressing high nuclear levels of E2F4 also expressed cyclin A protein. Lastly, E2F4 and its target cyclin A were up-regulated and mostly nuclear in human colorectal tumor cells in comparison to the corresponding benign epithelium. These results indicate that nuclear E2F4 may be determinant in the promotion of proliferation of human intestinal epithelial crypt cells and colorectal cancer cells. J. Cell. Physiol. 221: 350,358, 2009. © 2009 Wiley-Liss, Inc. [source]


Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 2 2006
M. GAUR
Summary.,Background:,The platelet fibrinogen receptor, a heterodimer consisting of integrin subunits ,IIb and ,3, is required for platelet aggregation, spreading, and hemostasis. Platelet agonists such as thrombin and adenosine diphosphate (ADP) lead to the activation of ,IIb,3, thereby enhancing its affinity and avidity for binding fibrinogen (inside-out signaling). Furthermore, fibrinogen binding to ,IIb,3 triggers cytoskeletal changes and granule release (outside-in signaling).Aim:,Genetic approaches to characterize the molecular pathways involved in ,IIb,3 signaling are not possible with anucleate blood platelets. Therefore, we have established an OP9 stromal cell co-culture system to generate megakaryocytes from human embryonic stem cells (hESCs).Results:,,IIb,3 activation, measured by soluble fibrinogen binding to hESC-derived megakaryocytes, /GPIb,+ cells, is readily detectable following stimulation with known platelet agonists. Dose,response curves for peptide agonists specific for the two platelet thrombin receptors, protease-activated receptor 1 (PAR1) and PAR4, show a relative responsiveness that mirrors that of human platelets, and sub-maximal ADP responses are augmented by epinephrine. Moreover, hESC-derived megakaryocytes undergo lamellipodia formation, actin filament assembly, and vinculin localization at focal adhesions when plated on a fibrinogen-coated surface, characteristic of ,IIb,3 outside-in signaling. Undifferentiated hESCs genetically modified by lentiviral infection can be cloned and maintained in an undifferentiated state and then differentiated into megakaryocytes capable of ,IIb,3 activation.Conclusion:,Using hESCs, we have developed a renewable source of human megakaryocytes, and a genetically tractable system for studying megakaryocytopoiesis and ,IIb,3 signaling in the native cellular environment. [source]