Lens Regeneration (lens + regeneration)

Distribution by Scientific Domains


Selected Abstracts


Requirement for ,B1-crystallin promoter of Xenopus laevis in embryonic lens development and lens regeneration

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 3 2005
Nobuhiko Mizuno
Regulation of the lens-specific ,B1-crystallin promoter in Xenopus laevis was investigated using transgenic larvae and tadpoles. Comparison of the promoter sequence with that of chicken ,B1-crystallin gene indicates significant sequence similarity over a span of several hundred base pairs starting from the transcriptional start site. Remarkably, PL-1 and PL-2 sequences identified in the chicken promoter as essential binding sites of MAF, Pax6 and Prox1 transcription factors were conserved. Mutations of X (Xenopus) PL-1 and XPL-2 sequences eliminated the promoter activity, indicating a conserved mechanism regulating ,B1-crystallin promoter among vertebrate species. A stepwise deletion of the promoter sequence starting from 2800 bp indicated that the proximal 260 bp directly upstream of the transcription initiation site is sufficient for eliciting lens-specific expression, but the 150 bp promoter sequence is inactive despite it containing the XPL-1 and XPL-2 sequences, suggesting the presence of an additional and essential regulatory sequence located between ,150 and ,260 bp. Activity of the ,B1-crystallin promoter during lens regeneration from cornea was examined using transgenic tadpoles and found to have the same dependence on promoter regions as in embryonic lens development, indicating that gene regulation is largely shared by the two lens-generating processes. [source]


Gene expression profiles of lens regeneration and development in Xenopus laevis

DEVELOPMENTAL DYNAMICS, Issue 9 2009
Erica L. Malloch
Abstract Seven hundred and thirty-four unique genes were recovered from a cDNA library enriched for genes up-regulated during the process of lens regeneration in the frog Xenopus laevis. The sequences represent transcription factors, proteins involved in RNA synthesis/processing, components of prominent cell signaling pathways, genes involved in protein processing, transport, and degradation (e.g., the ubiquitin/proteasome pathway), matrix metalloproteases (MMPs), as well as many other proteins. The findings implicate specific signal transduction pathways in the process of lens regeneration, including the FGF, TGF-beta, MAPK, Retinoic acid, Wnt, and hedgehog signaling pathways, which are known to play important roles in eye/lens development and regeneration in various systems. In situ hybridization revealed that the majority of genes recovered are expressed during embryogenesis, including in eye tissues. Several novel genes specifically expressed in lenses were identified. The suite of genes was compared to those up-regulated in other regenerating tissues/organisms, and a small degree of overlap was detected. Developmental Dynamics 238:2340,2356, 2009. © 2009 Wiley-Liss, Inc. [source]


Rapid accumulation of nucleostemin in nucleolus during newt regeneration

DEVELOPMENTAL DYNAMICS, Issue 4 2007
Nobuyasu Maki
Abstract In newt regeneration, differentiated cells can revert to stem cell,like cells in which the proliferative ability and multipotentiality are restored after dedifferentiation. However, the molecular events that occur during the dedifferentiation still remain obscure. Nucleostemin has been identified in mammals as a nucleolar protein specific to stem cells and cancer cells. In this study, a newt nucleostemin homologue was cloned and its regulation was analyzed. During lens regeneration, the expression of nucleostemin was activated and nucleostemin rapidly accumulated in the nucleoli of dedifferentiating pigmented epithelial cells 2 days before cell cycle reentry. During limb regeneration, nucleostemin also accumulated in the nucleoli of degenerating multinucleate muscle fibers before blastema formation. These findings suggest that nucleostemin plays a role in the dedifferentiation of newt cells and can provide crucial clues for addressing the molecular events at early steps of cellular dedifferentiation in newts. Developmental Dynamics 236:941,950, 2007. © 2006 Wiley-Liss, Inc. [source]


Regeneration, tissue injury and the immune response

JOURNAL OF ANATOMY, Issue 4 2006
James W. Godwin
Abstract The involvement of the immune system in the response to tissue injury has raised the possibility that it might influence tissue, organ or appendage regeneration following injury. One hypothesis that has been discussed is that inflammatory aspects may preclude the occurrence of regeneration, but there is also evidence for more positive roles of immune components. The vertebrate eye is an immunoprivileged site where inflammatory aspects are inhibited by several immunomodulatory mechanisms. In various newt species the ocular tissues such as the lens are regenerative and it has recently been shown that the response to local injury of the lens involves activation of antigen-presenting cells which traffic to the spleen and return to displace and engulf the lens, thereby inducing regeneration from the dorsal iris. The activation of thrombin from prothrombin in the dorsal iris is one aspect of the injury response that is important in the initiation of regeneration. The possible relationships between the immune response and the regenerative response are considered with respect to phylogenetic variation of regeneration in general, and lens regeneration in particular. [source]