Leiomyoma Cells (leiomyoma + cell)

Distribution by Scientific Domains


Selected Abstracts


Oestrogen deficiency causes DNA damage in uterine leiomyoma cells: a possible mechanism for shrinkage of fibroids by GnRH agonists

BJOG : AN INTERNATIONAL JOURNAL OF OBSTETRICS & GYNAECOLOGY, Issue 1 2001
Ya-Min Cheng
Objective To examine whether gonadotrophin-releasing hormone agonist or oestradiol can directly affect DNA in leiomyoma cells. Design In vitro explant culture of leiomyoma cells. Setting University research group. Sample Leiomyoma cells were cultured from the specimens of four premenopausal women at myomectomy. Methods The presence of gonadotrophin-releasing hormone receptor in leiomyoma cells was determined by reverse transcriptase,olymerase chain reaction. Leiomyoma cells were treated with gonadotrophin-releasing hormone agonist or cultured in different concentrations of oestrogen, progesterone or fetal calf serum for one, four or seven days. Main outcome measures Cell number, expression of proliferating cell nuclear antigen, and DNA damage after one, four or seven days of treatment. Results Gonadotrophin-releasing hormone receptor messenger ribonucleic acid was detected on cultured leiomyoma cells. Leiomyoma cell growth was not affected by the addition of gonadotrophin-releasing hormone agonist or progesterone, but increased with oestrogen or fetal calf serum supplementation. Overexpression of proliferating cell nuclear antigen was prevented in cultures added with oestrogen or fetal calf serum, but not related to gonadotrophin-releasing hormone agonist treatment. Significant decreases in DNA damage as indicated by decreased comet number were found in the leiomyoma cultures treated with oestrogen or fetal calf serum for four and seven days but not with gonadotrophin-releasing hormone agonist or progesterone. Furthermore, 5% fetal calf serum supplementation was more growth supporting and more significantly reduced the comet number than 250 pM 17 , -oestradiol. Conclusion Cell growth, proliferating cell nuclear antigen expression and DNA damage are dependent on oestrogen or fetal calf serum, but independent of gonadotrophin-releasing hormone agonist or progesterone. Our findings suggest that gonadotrophin-releasing hormone agonist-induced leiomyoma shrinkage may be due in part to a mechanism involving DNA damage, and support the hypothesis that gonadotrophin-releasing hormone agonist exerts its action indirectly through oestrogen action on the tumour level. [source]


Antiproliferative effect of Scutellaria barbata D. Don. on cultured human uterine leiomyoma cells by down-regulation of the expression of Bcl-2 protein

PHYTOTHERAPY RESEARCH, Issue 5 2008
Kyung-Woon Kim
Abstract Scutellaria barbata D. Don (Lamiaceae; SB) inhibited the growth of leiomyomal cells (LM). A time-dependent antiproliferative effect was noted when 10,5m buserelin, gonadotrophin-releasing hormone (GnRH) agonist or 20,40 µg/mL SB was added. The inhibition of cell growth decreased with the addition of the PKC activator (12-O-tetradecanoylphorbor-13-acetate; TPA) much as it did with the addition of SB, and the decreases in the viable cells caused by the addition of SB were reversed completely by pretreatment with a protein kinase C (PKC) inhibitor (calphostin C). The findings suggest that SB inhibits cell proliferation in cultured human uterine leiomyoma cells accompanied by PKC activation. Next, the study investigated the effect of SB on fetal development for toxicity. Pregnant Sprague-Dawley rats, from gestation day 6,15, were administered 20 g/L or 50 g/L SB in the drinking water and then killed on day 20. No maternal toxicity was observed, however, embryonic loss in the treatment groups was double that of the controls (p < 0.05). No gross morphologic malformations were seen in the treated fetuses. Fetuses exposed to SB were found to be significantly heavier than the controls, an effect that was greater in female fetuses and was not correlated with increased placental size. The results suggest that the SB had no toxicity and that in utero exposure to SB resulted in increased early embryo loss with increased growth in surviving fetuses. On the other hand, Western blot analyses revealed that Bcl-2 protein of a 26 kDa was abundant in leiomyomal cells, but not in normal myometrial cells. The addition of progesterone (100 ng/mL) resulted in a striking increase in Bcl-2 protein expression in the cultured leiomyoma cells. However, the addition of SB (20 µg/mL) resulted in a significant reduction in Bcl-2 protein expression in the cells. The results indicated that human uterine leiomyomal cells express Bcl-2 protein and progesterone enhances its expression, however, SB reduces the expression of Bcl-2 protein in human uterine leiomyoma cells. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Oestrogen deficiency causes DNA damage in uterine leiomyoma cells: a possible mechanism for shrinkage of fibroids by GnRH agonists

BJOG : AN INTERNATIONAL JOURNAL OF OBSTETRICS & GYNAECOLOGY, Issue 1 2001
Ya-Min Cheng
Objective To examine whether gonadotrophin-releasing hormone agonist or oestradiol can directly affect DNA in leiomyoma cells. Design In vitro explant culture of leiomyoma cells. Setting University research group. Sample Leiomyoma cells were cultured from the specimens of four premenopausal women at myomectomy. Methods The presence of gonadotrophin-releasing hormone receptor in leiomyoma cells was determined by reverse transcriptase,olymerase chain reaction. Leiomyoma cells were treated with gonadotrophin-releasing hormone agonist or cultured in different concentrations of oestrogen, progesterone or fetal calf serum for one, four or seven days. Main outcome measures Cell number, expression of proliferating cell nuclear antigen, and DNA damage after one, four or seven days of treatment. Results Gonadotrophin-releasing hormone receptor messenger ribonucleic acid was detected on cultured leiomyoma cells. Leiomyoma cell growth was not affected by the addition of gonadotrophin-releasing hormone agonist or progesterone, but increased with oestrogen or fetal calf serum supplementation. Overexpression of proliferating cell nuclear antigen was prevented in cultures added with oestrogen or fetal calf serum, but not related to gonadotrophin-releasing hormone agonist treatment. Significant decreases in DNA damage as indicated by decreased comet number were found in the leiomyoma cultures treated with oestrogen or fetal calf serum for four and seven days but not with gonadotrophin-releasing hormone agonist or progesterone. Furthermore, 5% fetal calf serum supplementation was more growth supporting and more significantly reduced the comet number than 250 pM 17 , -oestradiol. Conclusion Cell growth, proliferating cell nuclear antigen expression and DNA damage are dependent on oestrogen or fetal calf serum, but independent of gonadotrophin-releasing hormone agonist or progesterone. Our findings suggest that gonadotrophin-releasing hormone agonist-induced leiomyoma shrinkage may be due in part to a mechanism involving DNA damage, and support the hypothesis that gonadotrophin-releasing hormone agonist exerts its action indirectly through oestrogen action on the tumour level. [source]