Home About us Contact | |||
Lectin Binding (lectin + binding)
Selected AbstractsConsistent Bioactive Conformation of the Neu5Ac,(2,3)Gal Epitope Upon Lectin BindingCHEMBIOCHEM, Issue 18 2008Anirban Bhunia Dr. Get to NOE MAG: Partial structures of GQ1b,, the natural ligand of the myelin-associated glycoprotein (MAG), have been synthesized and subjected to NOE experiments to determine their bioactive conformations. The experiments show that the flexible ,(2,3)-glycosidic linkage between N -acetylneuraminic acid and galactose present in all ligands adopts a "sialyl Lewisx -type" binding mode. This information is valuable for the future design of conformationally preorganized MAG inhibitors. [source] Cell surface glycoconjugates in the olfactory system of lungfish Protopterus annectens OwenACTA ZOOLOGICA, Issue 2 2000Valeria Franceschini Abstract Franceschini, V. Lazzari, M. and Ciani, F. 2000. Cell surface glycoconjugates in the olfactory system of lungfish Protopterus annectens Owen. ,Acta Zoologica (Stockholm) 81: 131,137 Lectin binding was performed on the olfactory system of lungfish Protopterus annectens to identify specific glycoconjugates on the cell surface of olfactory receptor cells. The lectin histochemical patterns and the Western blot analysis indicate that the receptor cells of the olfactory mucosa are characterized by high density of ,-N-acetyl- d -galactosamine residues on the saccharidic chains of the surface glycoproteins. Other lectins display a regional pattern between the regions of the olfactory bulbs. This different histochemical lectin pattern might be due to a different regional segregation of the olfactory projections. On the other hand it could allow the identification of an area corresponding to the accessory olfactory bulb of terrestrial vertebrates in the ventrolateral region of Protopterus olfactory bulb. The presence in the dipnoan olfactory system of a vomeronasal organ homologous to the organ in amphibians is discussed. Moreover, the selective lectin binding on the surface of primary olfactory neurones suggests that specific cell surface glycoproteins may have a role in the axonal growth due to the continuous cycle of proliferation and the death of olfactory receptor cells. [source] Altered glycosylation of acetylcholinesterase in Creutzfeldt,Jakob diseaseJOURNAL OF NEUROCHEMISTRY, Issue 1 2006Marķa-Ximena Silveyra Abstract Changes in the glycosylation pattern of brain proteins have been associated with Creutzfeldt,Jakob disease (CJD). We have investigated the glycosylation status of acetylcholinesterase (AChE) by lectin binding assay. Our data show that in lumbar CSF from definite and probable sporadic CJD cases AChE activity is lower compared with that in age-matched controls. We also show, for the first time, that AChE glycosylation is altered in CJD CSF and brain. Unlike Alzheimer's disease, in which an alteration in both the glycosylation and levels of AChE molecular forms is observed, the abnormal glycosylation of AChE in CJD appears to be unrelated to changes in molecular forms of this enzyme. These findings suggest that altered AChE glycosylation in CJD may be a consequence of the general perturbation of the glycosylation machinery that affects prion protein, as well as other proteins. The diagnostic potential of these changes remains to be explored. [source] Possible Molecular Evolution of Biomembranes: from Single-Chain to Double-Chain LipidsCHEMISTRY & BIODIVERSITY, Issue 5 2007Mari Gotoh Abstract We have studied a possible evolution process permitting a ,primitive' membrane to evolve towards a membrane structure with an outer wall, similar to that of bacteria. We have investigated whether a polysaccharide bearing hydrophobic phytyl or cholesteryl chains coats giant vesicles made of single- or double-chain lipids. Phytyl-pullulan 5b was found to bind to the surface of vesicles made of either single- or double-chain lipids. In contrast, cholesteryl-pullulan 5a only coated the surface of vesicles made of double-chain lipids. These results indicate that there must be a close match between the size and shape of membrane constituents and the hydrophobic molecules to be inserted. This process could, thus, provide a selection mechanism of lipid-membrane constituents during the course of biomembrane evolution. The presence of the above ,hydrophobized' polysaccharides on the surface of different giant vesicles was identified by lectin binding. Both concanavalin A and annexin V were shown by fluorescence microscopy to bind spontaneously to vesicles made of double-chain lipids. Our experiments exemplify that self-organization of amphiphiles into closed vesicles in aqueous solution automatically leads to the coating of vesicles by ,hydrophobized' polysaccharides, which then permit lectin binding. This is a possible mechanism for the evolution of primitive membranes towards ,proto-cells'. [source] Lectin-Based Drug Design: Combined Strategy to Identify Lead Compounds using STD NMR Spectroscopy, Solid-Phase Assays and Cell Binding for a Plant Toxin ModelCHEMMEDCHEM, Issue 3 2010Abstract The growing awareness of the sugar code,i.e. the biological functionality of glycans,is leading to increased interest in lectins as drug targets. The aim of this study was to establish a strategic combination of screening procedures with increased biorelevance. As a model, we used a potent plant toxin (viscumin) and lactosides synthetically modified at the C6/C6, positions and the reducing end aglycan. Changes in the saturation transfer difference (STD) in NMR spectroscopy, applied in inhibition assays, yielded evidence for ligand activity and affinity differences. Inhibitory potency was confirmed by the blocking of lectin binding to a glycoprotein-bearing matrix. In cell-based assays, iodo/azido-substituted lactose derivatives were comparatively active. Interestingly, cell-type dependence was observed, indicating the potential of synthetic carbohydrate derivative to interact with lectins in a cell-type (glycan profile)-specific manner. These results are relevent to research into human lectins, glycosciences, and beyond. [source] Distribution of Lectin-Bindings in the Testis of the Lesser Mouse Deer, Tragulus javanicusANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 3 2009S. Agungpriyono Summary The distribution of lectin bindings in the testis of the smallest ruminant, lesser mouse deer (Tragulus javanicus), was studied using 12 biotinylated lectins specific for d -galactose (peanut agglutinin PNA, Ricinus communis agglutinin RCA I), N -acetyl- d -galactosamine (Dolichos biflorus agglutinin DBA, Vicia villosa agglutinin VVA, Soybean agglutinin SBA), N -acetyl- d -glucosamine and sialic acid (wheat germ agglutinin WGA, s-WGA), d -mannose and d -glucose (Lens culinaris agglutinin LCA, Pisum sativum agglutinin PSA, Concanavalin A Con A), l -fucose (Ulex europaeus agglutinin UEA I), and oligosaccharide (Phaseolus vulgaris agglutinin PHA-E) sugar residues. In Golgi-, cap-, and acrosome-phase spermatids, lectin-bindings were found in the acrosome (PNA, RCA I, VVA, SBA, WGA and s-WGA), and in the cytoplasm (PNA, RCA I, VVA, SBA, WGA, LCA, PSA, Con A and PHA-E). s-WGA binding was confined to the spermatid acrosome, but other lectins were also observed in spermatocytes. In spermatogonia, VVA, WGA, Con A, and PHA-E bindings were observed. Sertoli cells were intensely stained with DBA and Con A, and weakly with PHA-E. In interstitial Leydig cells, RCA I, DBA, VVA, Con A, PSA, LCA, WGA and PHA-E were positive. UEA I was negative in all cell types including spermatogenic cells. Unusual distribution of lectin-bindings noted in the testis of lesser mouse deer included the limited distribution of s-WGA only in the spermatid acrosome, the distribution of DBA in Sertoli cells, Leydig cells and lamina propria, and the absence of UEA I in all type cells. The present results were discussed in comparison with those of other animals and their possible functional implications. [source] |