Home About us Contact | |||
Laue Technique (laue + technique)
Selected AbstractsApplication of white-beam X-ray microdiffraction for the study of mineralogical phase identification in ancient Egyptian pigmentsJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 6 2007P. A. Lynch High-brightness synchrotron X-rays together with precision achromatic focusing optics on beamline 7.3.3 at the Advanced Light Source have been applied for Laue microdiffraction analysis of mineralogical phases in Egyptian pigments. Although this task is usually performed using monochromatic X-ray diffraction, the Laue technique was both faster and more reliable for the present sample. In this approach, white-beam diffraction patterns are collected as the sample is raster scanned across the incident beam (0.8,µm × 0.8,µm). The complex Laue diffraction patterns arising from illumination of multiple grains are indexed using the white-beam crystallographic software package XMAS, enabling a mineralogical map as a function of sample position. This methodology has been applied to determine the mineralogy of colour pigments taken from the ancient Egyptian coffin of Tjeseb, a priestess of the Apis bull dating from the Third Intermediate to Late period, 25th Dynasty to early 26th Dynasty (747 to 600 BC). For all pigments, a ground layer of calcite and quartz was identified. For the blue pigment, cuprorivaite (CuCaSi4O10) was found to be the primary colouring agent with a grain size ranging from ,10 to 50,µm. In the green and yellow samples, malachite [Cu2(OH)2CO3] and goethite [FeO(OH)] were identified, respectively. Grain sizes from these pigments were significantly smaller. It was possible to index some malachite grains up to ,20,µm in size, while the majority of goethite grains displayed a nanocrystalline particle size. The inability to obtain a complete mineralogical map for goethite highlights the fact that the incident probe size is considerably larger than the grain size. This limit will continue to improve as the present trend is toward focusing optics approaching the diffraction limit (,1000× smaller beam area). [source] A single-crystal time-of-flight neutron diffractometer at a spallation neutron sourceJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 4 2007Miwako Takahashi A single-crystal diffractometer using the time-of-flight (TOF) Laue technique had been operated for studies of structural and magnetic disorder and phase transitions in alloys and magnetic materials at the pulsed spallation neutron source facility of the KEK Neutron Science Laboratory (KENS). In various sample environments, the diffractometer has demonstrated its usefulness in measurements of diffuse scattering for studying local structures, and in surveys of reciprocal space for studying phase transitions and incommensurate structures under the conditions of varying temperature and magnetic field. Particular emphasis is placed on the fact that though the instrument did not receive high-flux neutrons for long wavelengths suitable for the studies of magnetic scattering, it gave good results on the observations of magnetic diffuse scattering and superlattice reflections. Remarks and future tasks of the TOF Laue technique are discussed in relation to the asymmetric pulse shape, separation of the inelastic scattering, and dependence of data correction on the sample quality. [source] Feasibility of one-shot-per-crystal structure determination using Laue diffractionACTA CRYSTALLOGRAPHICA SECTION D, Issue 1 2010Sterling Cornaby Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a `pink' beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20,30,µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used. [source] |