Lateral Parabrachial Nucleus (lateral + parabrachial_nucleus)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Progressive supranuclear palsy: neuronal and glial cytoskeletal pathology in the higher order processing autonomic nuclei of the lower brainstem

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 1 2002
U. Rüb
The medial and lateral parabrachial nuclei (MPB, LPB), the gigantocellular reticular nucleus (GI), the raphes magnus (RMG) and raphes obscurus nuclei (ROB), as well as the intermediate reticular zone (IRZ) represent pivotal subordinate brainstem centres, all of which control autonomic functions. In this study, we investigated the occurrence and severity of the neuronal and glial cytoskeletal pathology in these six brainstem nuclei from 17 individuals with clinically diagnosed and neuropathologically confirmed progressive supranuclear palsy (PSP). The association between the severity of the pathology and the duration of the disease was investigated by means of correlation analysis. The brainstem nuclei in all of the PSP cases were affected by the neuronal cytoskeletal pathology, with the IRZ and GI regularly showing severe involvement, the MPB, RMG, and ROB marked involvement, and the LPB mild involvement. In the six nuclear greys studied, glial cells undergo alterations of their cytoskeleton on an irregular basis, whereby diseased oligodendrocytes predominantly presented as coiled bodies and affected astrocytes as thorn-shaped astrocytes. In all six nuclei, the severity of the neuronal or glial cytoskeletal pathology showed no correlation with the duration of PSP. In view of their functional role, the neuronal pathology in the nuclei studied offers a possible explanation for the autonomic dysfunctions that eventually develop in the course of PSP. [source]


Identification of brain neurons expressing the dopamine D4 receptor gene using BAC transgenic mice

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2006
Daniela Noaín
Abstract The dopamine D4 receptor (D4R) has received considerable interest because of its higher affinity for atypical antipsychotics, the extremely polymorphic nature of the human gene and the genetic association with attention deficit and hyperactivity disorder (ADHD). Several efforts have been undertaken to determine the D4R expression pattern in the brain using immunohistochemistry, binding autoradiography and in situ hybridization, but the overall published results present large discrepancies. Here, we have explored an alternative genetic approach by studying bacterial artificial chromosome (BAC) transgenic mice that express enhanced green fluorescent protein (EGFP) under the transcriptional control of the mouse dopamine D4 receptor gene (Drd4). Immunohistochemical analysis performed in brain sections of Drd4 -EGFP transgenic mice using an anti-EGFP polyclonal antibody showed that transgenic expression was predominant in deep layer neurons of the prefrontal cortex, particularly in the orbital, prelimbic, cingulate and rostral agranular portions. In addition, discrete groups of Drd4 -EGFP labelled neurons were observed in the anterior olfactory nucleus, ventral pallidum, and lateral parabrachial nucleus. EGFP was not detected in the striatum, hippocampus or midbrain as described using other techniques. Given the fine specificity of EGFP expression in BAC transgenic mice and the high sensitivity of the EGFP antibody used in this study, our results indicate that Drd4 expression in the adult mouse brain is limited to a more restricted number of areas than previously reported. Its leading expression in the prefrontal cortex supports the importance of the D4R in complex behaviours depending on cortical dopamine (DA) transmission and its possible role in the etiopathophysiology of ADHD. [source]


Central control of thermogenesis in mammals

EXPERIMENTAL PHYSIOLOGY, Issue 7 2008
Shaun F. Morrison
Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature in mammals and birds during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. The primary sources of neurally regulated metabolic heat production are mitochondrial oxidation in brown adipose tissue, increases in heart rate and shivering in skeletal muscle. Thermogenesis is regulated in each of these tissues by parallel networks in the central nervous system, which respond to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate the appropriate sympathetic and somatic efferents. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates thermogenesis and discusses the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E2, to increase body temperature. The cold thermal afferent circuit from cutaneous thermal receptors ascends via second-order thermosensory neurons in the dorsal horn of the spinal cord to activate neurons in the lateral parabrachial nucleus, which drive GABAergic interneurons in the preoptic area to inhibit warm-sensitive, inhibitory output neurons of the preoptic area. The resulting disinhibition of thermogenesis-promoting neurons in the dorsomedial hypothalamus and possibly of sympathetic and somatic premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, activates excitatory inputs to spinal sympathetic and somatic motor circuits to drive thermogenesis. [source]


Lateral parabrachial afferent areas and serotonin mechanisms activated by volume expansion

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 16 2008
Lisandra Oliveira Margatho
Abstract Recent evidence has shown that the serotonergic mechanism of the lateral parabrachial nucleus (LPBN) participates in the regulation of renal and hormonal responses to isotonic blood volume expansion (BVE). We investigated the BVE-induced Fos activation along forebrain and hindbrain nuclei and particularly within the serotonergic clusters of the raphé system that directly project to the LPBN. We also examined whether there are changes in the concentration of serotonin (5HT) within the raphé nucleus in response to the same stimulus. With this purpose, we analyzed the cells doubly labeled for Fos and Fluorogold (FG) following BVE (NaCl 0.15 M, 2 ml/100 g b.w., 1 min) 7 days after FG injection into the LPBN. Compared with the control group, blood volume-expanded rats showed a significant greater number of Fos-FG double-labeled cells along the nucleus of the solitary tract, locus coeruleus, hypothalamic paraventricular nucleus, central extended amygdala complex, and dorsal raphé nucleus (DRN) cells. Our study also showed an increase in the number of serotonergic DRN neurons activated in response to isotonic BVE. We also observed decreased levels of 5HT and its metabolite 5-hydroxyindoleacetic acid (measured by high-pressure liquid chromatography) within the raphé nucleus 15 min after BVE. Given our previous evidence on the role of the serotonergic system in the LPBN after BVE, the present morphofunctional findings suggest the existence of a key pathway (DRN-LPBN) that may control BVE response through the modulation of 5HT release. © 2008 Wiley-Liss, Inc. [source]


Androgen receptor expressing neurons that project to the paraventricular nucleus of the hypothalamus in the male rat

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 6 2007
Martin Williamson
Abstract Androgen receptors are distributed throughout the central nervous system and are contained by a variety of nuclei that are known to project to or regulate the paraventricular nucleus (PVN) of the hypothalamus, the final common pathway by which the brain regulates the hypothalamic,pituitary,adrenal (HPA) response to homeostatic threat. Here we characterized androgen receptor staining within cells identified as projecting to the PVN in male rats bearing iontophoretic or crystalline injections of the retrograde tracer FluoroGold aimed at the caudal two-thirds of the nucleus, where corticotropin-releasing hormone-expressing neurons are amassed. Androgen receptor (AR) and FluoroGold (FG) double labeling was revealed throughout the limbic forebrain, including scattered numbers of cells within the anterior and posterior subdivisions of the bed nuclei of the stria terminalis; the medial zone of the hypothalamus, including large numbers of AR-FG-positive cells within the anteroventral periventricular and medial preoptic cell groups. Strong and consistent colabeling was also revealed throughout the hindbrain, predominantly within the periaqueductal gray and the lateral parabrachial nucleus, and within various medullary cell groups identified as catecholaminergic, predominantly C1 and A1 neurons of the ventral medulla. These connectional data predict that androgens can act on a large assortment of multimodal inputs to the PVN, including those involved with the processing of various types of sensory and limbic information, and provide an anatomical framework for understanding how gonadal status could contribute to individual differences in HPA function. J. Comp. Neurol. 503:717,740, 2007. © 2007 Wiley-Liss, Inc. [source]


Right atrial stretch alters fore- and hind-brain expression of c-fos and inhibits the rapid onset of salt appetite

THE JOURNAL OF PHYSIOLOGY, Issue 15 2008
Juliana Irani Fratucci De Gobbi
The inflation of an intravascular balloon positioned at the superior vena cava and right atrial junction (SVC-RAJ) reduces sodium or water intake induced by various experimental procedures (e.g. sodium depletion; hypovolaemia). In the present study we investigated if the stretch induced by a balloon at this site inhibits a rapid onset salt appetite, and if this procedure modifies the pattern of immunohistochemical labelling for Fos protein (Fos-ir) in the brain. Male Sprague,Dawley rats with SVC-RAJ balloons received a combined treatment of furosemide (Furo; 10 mg (kg bw),1) plus a low dose of the angiotensin-converting enzyme inhibitor captopril (Cap; 5 mg (kg bw),1). Balloon inflation greatly decreased the intake of 0.3 m NaCl for as long as the balloon was inflated. Balloon inflation over a 3 h period following Furo,Cap treatment decreased Fos-ir in the organum vasculosum of the lamina terminalis and the subfornical organ and increased Fos-ir in the lateral parabrachial nucleus and caudal ventrolateral medulla. The effect of balloon inflation was specific for sodium intake because it did not affect the drinking of diluted sweetened condensed milk. Balloon inflation and deflation also did not acutely change mean arterial pressure. These results suggest that activity in forebrain circumventricular organs and in hindbrain putative body fluid/cardiovascular regulatory regions is affected by loading low pressure mechanoreceptors at the SVC-RAJ, a manipulation that also attenuates salt appetite. [source]