Lateral Membranes (lateral + membrane)

Distribution by Scientific Domains


Selected Abstracts


ROCK inhibitor (Y27632) increases apoptosis and disrupts the actin cortical mat in embryonic avian corneal epithelium

DEVELOPMENTAL DYNAMICS, Issue 3 2004
Kathy K.H. Svoboda
Abstract The embryonic chicken corneal epithelium is a unique tissue that has been used as an in vitro epithelial sheet organ culture model for over 30 years (Hay and Revel [1969] Fine structure of the developing Avian cornea. Basel, Switzerland: S. Karger A.G.). This tissue was used to establish that epithelial cells could produce extracellular matrix (ECM) proteins such as collagen and proteoglycans (Dodson and Hay [1971] Exp Cell Res 65:215,220; Meier and Hay [1973] Dev Biol 35:318,331; Linsenmayer et al. [1977] Proc Natl Acad Sci U S A 74:39,43; Hendrix et al. [1982] Invest Ophthalmol Vis Sci 22:359,375). This historic model was also used to establish that ECM proteins could stimulate actin reorganization and increase collagen synthesis (Sugrue and Hay [1981] J Cell Biol 91:45,54; Sugrue and Hay [1982] Dev Biol 92:97,106; Sugrue and Hay [1986] J Cell Biol 102:1907,1916). Our laboratory has used the model to establish the signal transduction pathways involved in ECM-stimulated actin reorganization (Svoboda et al. [1999] Anat Rec 254:348,359; Chu et al. [2000] Invest Ophthalmol Vis Sci 41:3374,3382; Reenstra et al. [2002] Invest Ophthalmol Vis Sci 43:3181,3189). The goal of the current study was to investigate the role of ECM in epithelial cell survival and the role of Rho-associated kinase (p160 ROCK, ROCK-1, ROCK-2, referred to as ROCK), in ECM and lysophosphatidic acid (LPA) -mediated actin reorganization. Whole sheets of avian embryonic corneal epithelium were cultured in the presence of the ROCK inhibitor, Y27632 at 0, 0.03, 0.3, 3, or 10 ,M before stimulating the cells with either collagen (COL) or LPA. Apoptosis was assessed by Caspase-3 activity assays and visualized with annexin V binding. The ROCK inhibitor blocked actin cortical mat reformation and disrupted the basal cell lateral membranes in a dose-dependent manner and increased the apoptosis marker annexin V. In addition, an in vitro caspase-3 activity assay was used to determine that caspase-3 activity was higher in epithelia treated with 10 ,M Y-27632 than in those isolated without the basal lamina or epithelia stimulated with fibronectin, COL, or LPA. In conclusion, ECM molecules decreased apoptosis markers and inhibiting the ROCK pathway blocked ECM stimulated actin cortical mat reformation and increased apoptosis in embryonic corneal epithelial cells. Developmental Dynamics 229:579,590, 2004. © 2004 Wiley-Liss, Inc. [source]


Membrane potential and endocytic activity control disintegration of cell,cell adhesion and cell fusion in vinculin-injected MDBK cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2004
Riitta Palovuori
Cell fusion occurs during fertilization and in the formation of organs such as muscles, placenta, and bones. We have developed an experimental model for epithelial cell fusion which permits analysis of the processes during junction disintegration and formation of polykaryons (Palovuori and Eskelinen [2000] Eur. J. Cell. Biol. 79: 961,974). In the present work, we analyzed the process in detail. Cell fusion was achieved by microinjecting into the cytoplasm of kidney epithelial Madin-Darby bovine kidney (MDBK) cells TAMRA-tagged vinculin, which incorporated into lateral membranes, focal adhesions and nucleus, and, prior fusion, induced internalization of actin, cadherin and plakoglobin to small clusters in cytoplasm. Injected vinculin was still visible at lateral membranes after removal of junctional proteins indicating that it was tightly associated and perturbed the cell,cell contact sites resulting in membrane fragmentation. Injection of active Rac together with vinculin induced accumulation of cadherin to the membranes, but did not affect vinculin,membrane association. However, it hampered cell fusion probably by supporting adherens junctions. In order to stop endocytosis, we lowered intracellular pH of vinculin-injected cells to 5.5 with the aid of nigericin in KCl buffer. In acidified cells, injected vinculin delineated lateral membranes as thick layers, cadherin remained in situ, and cell fusion was completely inhibited. Since this treatment also leads to cell depolarization, we checked the vinculin incorporation in a KCl solution containing nigericin at neutral pH. In these circumstances, both endogenous and injected vinculin delineated lateral membranes as very thin discontinuous layers, but still fusion was hampered most likely due to perturbation in the initial vinculin,membrane association. We suggest that vinculin might function as a sensor of the environment triggering cell fusion during development in circumstances where membrane potential and local and transient pH gradients play a role. © 2004 Wiley-Liss, Inc. [source]


Role of villus microcirculation in intestinal absorption of glucose: coupling of epithelial with endothelial transport

THE JOURNAL OF PHYSIOLOGY, Issue 2 2003
J. R. Pappenheimer
Capillaries in jejunal villi can absorb nutrients at rates several hundred times greater (per gram tissue) than capillaries in other tissues, including contracting skeletal muscle and brain. We here present an integrative hypothesis to account for these exceptionally large trans-endothelial fluxes and their relation to epithelial transport. Equations are developed for estimating concentration gradients of glucose across villus capillary walls, along paracellular channels and across subjunctional lateral membranes of absorptive cells. High concentrations of glucose discharged across lateral membranes to subjunctional intercellular spaces are delivered to abluminal surfaces of villus capillaries by convection-diffusion in intercellular channels without significant loss of concentration. Post-junctional paracellular transport thus provides the series link between epithelial and endothelial transport and makes possible the large trans-endothelial concentration gradients required for absorption to blood. Our analysis demonstrates that increases of villus capillary blood flow and permeability-surface area product (PS) are essential components of absorptive mechanisms: epithelial transport of normal digestive loads could not be sustained without concomitant increases in capillary blood flow and PS. The low rates of intestinal absorption found in anaesthetised animals may be attributed to inhibition of normal villus microvascular responses to epithelial transport. [source]