Home About us Contact | |||
Lateral Interactions (lateral + interaction)
Selected AbstractsCathodic Stripping Voltammetry of Uracil.ELECTROANALYSIS, Issue 1 2009Experimental, Theoretical Study Under Conditions of Square-Wave Voltammetry Abstract The electrode mechanism of uracil at a hanging mercury drop electrode (HMDE) is studied under cathodic stripping square-wave voltammetric mode owing to the cathodic dissolution of a sparingly soluble compound formed between the electrode material and uracil. The experimental results can be partly explained in the light of the recent theory for cathodic stripping processes of insoluble salts under conditions of square-wave voltammetry. It is established that the electrode reaction is complicated by attractive interactions between the deposited species of the insoluble compound. To elucidate the electrode mechanism completely a novel theoretical model is developed considering adsorption of the reacting analyte and lateral interactions between species of the insoluble compound. With the help of numerical simulations the effect of interactions is studied in detail, emphasizing the properties of the response that can be used as diagnostic criteria for recognition of the type of interaction forces. Theoretically predicted voltammetric properties agree well with the experimental results enabling clarification of the complex electrode mechanism of uracil at HMDE. [source] Spontaneous segregation on a hybrid chiral surfaceJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 10 2008Szabelski Abstract Segregation of enantiomers in two-dimensional adsorbed layers is a process that is usually controlled by anisotropic directional interactions between adsorbed molecules. In this contribution, we propose a simple theoretical model in which the chiral segregation occurs even though the lateral interactions are neglected. In particular, we consider a solid surface composed of two domains with different patterns of active sites being mirror images of each other. The domains of opposite handedness represent crystal facets of a composite chiral material which are adjoined to form a heterochiral adsorbing surface. To explore equilibrium properties of the system, we use Canonical Ensemble Monte Carlo method for a square lattice. The influence of factors such as energetic properties of the surface and density of the adsorbed layer on the extent of separation is examined. The obtained results indicate that effective two-dimensional separation on the hybrid chiral surface assumed in our model can be achieved only at sufficiently low adsorbate densities. The results also suggest that the segregation on the hybrid surface would be a promising method of enantiodiscrimination for those chiral molecules which do not exhibit strong lateral interactions. © 2008 Wiley Periodicals, Inc. J Comput Chem 2008 [source] Rigid,Flexible Block Molecules Based on a Laterally Extended Aromatic Segment: Hierarchical Assembly into Single Fibers, Flat Ribbons, and Twisted RibbonsCHEMISTRY - A EUROPEAN JOURNAL, Issue 23 2008Eunji Lee Abstract Self-assembling rigid,flexible block molecules consisting of a laterally extended aromatic segment and different lengths of hydrophilic coils were synthesized and characterized. The block molecule based on a long poly(ethylene oxide) coil (1), in the melt state, shows an unidentified columnar structure, whereas the molecule with a shorter poly(ethylene oxide) coil (2) self-organizes into an oblique columnar structure. Further decrease in the poly(ethylene oxide) coil length as in the case of 3, on heating, induces a rectangular columnar structure in addition to an oblique columnar mesophase. In diethyl ether, 1 and 2 were observed to self-assemble into uniform nanofibers with bilayer packing. Remarkably, these elementary fibers were observed to further aggregate in a lateral way to form well-defined flat ribbons (1) and twisted ribbons (2) with solvent exchange of diethyl ether into methanol. Furthermore, the ribbons formed in methanol dissociated into elementary fibers in response to the addition of aromatic guest molecules. This transformation between ribbons and single fibers in response to the addition of guest molecules is attributed to the intercalation of aromatic substrates within the rigid segments and subsequent loosening of the aromatic stacking interactions. These results demonstrate that the introduction of a laterally extended aromatic segment into an amphiphilic molecular architecture can lead to the hierarchical formation from elementary fibers of nanoribbons with a tunable twist through controlled lateral interactions between aromatic segments. [source] Molecular Recognition and Crystal Energy Landscapes: An X-ray and Computational Study of Caffeine and Other MethylxanthinesCHEMISTRY - A EUROPEAN JOURNAL, Issue 1 2005Lucia Carlucci Dr. Abstract We introduce a new approach to crystal-packing analysis, based on the study of mutual recognition modes of entire molecules or of molecular moieties, rather than a search for selected atom,atom contacts, and on the study of crystal energy landscapes over many computer-generated polymorphs, rather than a quest for the one most stable crystal structure. The computational tools for this task are a polymorph generator and the PIXEL density sums method for the calculation of intermolecular energies. From this perspective, the molecular recognition, crystal packing, and solid-state phase behavior of caffeine and several methylxanthines (purine-2,6-diones) have been analyzed. Many possible crystal structures for anhydrous caffeine have been generated by computer simulation, and the most stable among them is a thermodynamic, ordered equivalent of the disordered phase, revealed by powder X-ray crystallography. Molecular recognition energies between two caffeine molecules or between caffeine and water have been calculated, and the results reveal the largely predominant mode to be the stacking of parallel caffeine molecules, an intermediately favorable caffeine,water interaction, and many other equivalent energy minima for lateral interactions of much less stabilization power. This last indetermination helps to explain why caffeine does not crystallize easily into an ordered anhydrous structure. In contrast, the mono- and dimethylxanthines (theophylline, theobromine, and the 1,7-isomer, for which we present a single-crystal X-ray study and a lattice energy landscape) do crystallize in anhydrous form thanks to the formation of lateral hydrogen bonds. [source] |