Home About us Contact | |||
Late Summer (late + summer)
Selected AbstractsBrain aromatase, 5,-reductase, and 5,-reductase change seasonally in wild male song sparrows: Relationship to aggressive and sexual behaviorDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2003Kiran K. Soma Abstract In many species, territoriality is expressed only during the breeding season, when plasma testosterone (T) is elevated. In contrast, in song sparrows (Melospiza melodia morphna), males are highly territorial during the breeding (spring) and nonbreeding (autumn) seasons, but not during molt (late summer). In autumn, plasma sex steroids are basal, and castration has no effect on aggression. However, inhibition of aromatase reduces nonbreeding aggression, suggesting that neural steroid metabolism may regulate aggressive behavior. In wild male song sparrows, we examined the neural distribution of aromatase mRNA and seasonal changes in the activities of aromatase, 5,-, and 5,-reductase, enzymes that convert T to 17,-estradiol, 5,-dihydrotestosterone (5,-DHT, a potent androgen), or 5,-DHT (an inactive metabolite), respectively. Enzyme activities were measured in the diencephalon, ventromedial telencephalon (vmTEL, which includes avian amygdala), caudomedial neostriatum (NCM), and the hippocampus of birds captured during spring, molt, or autumn. Aromatase and 5,-reductase changed seasonally in a region-specific manner. Aromatase in the diencephalon was higher in spring than in molt and autumn, similar to seasonal changes in male sexual behavior. Aromatase activity in the vmTEL was high in both spring and autumn but significantly reduced at molt, similar to seasonal changes in aggression. 5,-Reductase was not elevated during molt, suggesting that low aggression during molt is not a result of increased inactivation of androgens. These data highlight the relevance of neural steroid metabolism to the expression of natural behaviors by free-living animals. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 209,221, 2003 [source] Windblown dust influenced by conventional and undercutter tillage within the Columbia Plateau, USA,EARTH SURFACE PROCESSES AND LANDFORMS, Issue 10 2009B. S. Sharratt Abstract Exceedance of the US Environmental Protection Agency national ambient air quality standard for PM10 (particulate matter ,10 µm in aerodynamic diameter) within the Columbia Plateau region of the Pacific Northwest US is largely caused by wind erosion of agricultural lands managed in a winter wheat,summer fallow rotation. Land management practices, therefore, are sought that will reduce erosion and PM10 emissions during the summer fallow phase of the rotation. Horizontal soil flux and PM10 concentrations above adjacent field plots (>2 ha), with plots subject to conventional or undercutter tillage during summer fallow, were measured using creep and saltation/suspension collectors and PM10 samplers installed at various heights above the soil surface. After wheat harvest in 2004 and 2005, the plots were either disked (conventional) or undercut with wide sweeps (undercutter) the following spring and then periodically rodweeded prior to sowing wheat in late summer. Soil erosion from the fallow plots was measured during six sampling periods over two years; erosion or PM10 loss was not observed during two periods due to the presence of a crust on the soil surface. For the remaining sampling periods, total surface soil loss from conventional and undercutter tillage ranged from 3 to 40 g m,2 and 1 to 27 g m,2 while PM10 loss from conventional and undercutter tillage ranged from 0·2 to 5·0 g m,2 and 0·1 to 3·3 g m,2, respectively. Undercutter tillage resulted in a 15% to 65% reduction in soil loss and 30% to 70% reduction in PM10 loss as compared with conventional tillage at our field sites. Therefore, based on our results at two sites over two years, undercutter tillage appears to be an effective management practice to reduce dust emissions from agricultural land subject to a winter wheat,summer fallow rotation within the Columbia Plateau. Copyright © 2009 John Wiley & Sons, Ltd. [source] Long-term change to fish assemblages and the flow regime in a southeastern U.S. river system after extensive aquatic ecosystem fragmentationECOGRAPHY, Issue 6 2008Christopher M. Taylor The upper Tombigbee River in northeastern Mississippi now exists as a fragment, confluencing with and fed by an extensively modified aquatic landscape now called the Tennessee-Tombigbee Waterway (TTW). We examined the changes to fish assemblages and flow regime after waterway construction based on contemporary comparisons to historical fish collections and discharge data. The river's flow regime has changed markedly since TTW construction. Analysis of discharge data from two stations for 15 years, pre- and post-waterway, indicated significant differences in flow regime including increased minimum and base flows, lower spring and higher late summer-autumn flows, and lower high flow durations, post-TTW. These changes corresponded to significantly reduced regional and local species richness, and strong shifts in fish assemblage structure across a 20 yr time span. Post-waterway fish assemblages were related strongly to measured environmental variables characterizing local habitats. Several lentic-adapted species increased their abundances in lower reaches of the river, including a recent invader to the TTW system, the Mississippi silverside Menidia audens. Fragmentation of river ecosystems via disruption to hydrologic regimes is a major threat to aquatic biodiversity worldwide. Because the flow regime of this fragmented river is in part controlled by waterway operations via five minimum flow control structures, adaptive conservation and management efforts could be implemented in order to maintain and potentially restore the natural flow regime and the ecological integrity of the system. [source] Mismatch between the timing of oviposition and the seasonal optimum.ECOLOGICAL ENTOMOLOGY, Issue 3 2010The stochastic phenology of Mediterranean acorn weevils 1. The timing of reproduction is predicted to match the period of maximum food availability. In this sense, the case of many phytophagous insects in temperate regions is very illustrative, as their larvae usually depend on a resource only available for a limited period of time each year. 2. For 3 years the interactions between the weevil Curculio elephas and the Mediterranean Holm oak Quercus ilex were studied. Weevil larvae grow within the acorns, feeding on the cotyledons. The timing of oviposition will determine food availability for the larvae, as acorns stop growing once they are attacked. 3. Acorn temporal growing patterns did not change between years and food availability for larvae was at its highest in October, when temperature was still suitable for larval development. However, oviposition phenology did change between years. In 2002 females oviposited later, larvae grew within larger acorns, and their body mass was significantly higher than in 2003 or 2004, when females oviposited into early acorns. 4. Thus, weevils do not always adjust oviposition to the best possible feeding conditions for their offspring. Rather, they seem to maximise their own lifetime fitness, ovipositing as soon as they emerge in late summer. Emergence, in turn, depends strongly on stochastic events such as summer storms in the Mediterranean region. 5. Under a climate change perspective, the trend towards higher August rainfall recorded in our study area may alter oviposition phenology, with the subsequent cascade effects on weevil body size and fitness [source] Nocturnal migration of dragonflies over the Bohai Sea in northern ChinaECOLOGICAL ENTOMOLOGY, Issue 5 2006HONG-QIANG FENG Abstract 1.,A sudden increase and subsequent sharp decrease of catches of dragonflies in a searchlight trap, with Pantala flavescens Fabricius (Odonata: Libellulidae) predominating, observed at Beihuang Island in the centre of the Bohai Gulf, in 2003 and 2004, indicated a seasonal migration of these insects over the sea during the night in China. The movements were associated with the onset of fog. 2.,Simultaneous radar observations indicated that the nocturnally migrating dragonflies generally flew at altitudes of up to 1000 m above sea level, with high density concentrations at about 200,300 or 500 m; these concentrations were coincident with the temperature inversion. 3.,During early summer, the dragonflies oriented in a downwind direction, so that the displacement direction varied between different altitudes. In contrast, during late summer, the dragonflies were able to compensate for wind drift, even headwind drift, so as to orient south-westward no matter how the wind changed, and thus the displacement direction was towards the south-west. 4.,The duration of flight, estimated from the variation of area density derived from radar data and hourly catches in the searchlight trap through the night, was about 9,10 h. The displacement speed detected using radar was ,5,11 m s,1. Therefore, the dragonflies might migrate 150,400 km in a single flight. 5.,The dragonflies were thought to originate in Jiangsu province and they migrated into north-east China to exploit the temporary environment of paddy fields in early summer. Their offspring probably migrated back south during late summer and autumn. [source] Autumnal moth , why autumnal?ECOLOGICAL ENTOMOLOGY, Issue 6 2001Toomas Tammaru Summary 1. As for some other spring-feeding moths, adult flight of Epirrita autumnata (Lepidoptera: Geometridae) occurs in late autumn. Late-season flight is a result of a prolonged pupal period. Potential evolutionary explanations for this phenological pattern are evaluated. 2. In a laboratory rearing, there was a weak correlation between pupation date and the time of adult emergence. A substantial genetic difference in pupal period was found between two geographic populations. Adaptive evolution of eclosion time can thus be expected. 3. Metabolic costs of a prolonged pupal period were found to be moderate but still of some ecological significance. Pupal mortality is likely to form the main cost of the prolonged pupal period. 4. Mortality rates of adults, exposed in the field, showed a declining temporal trend from late summer to normal eclosion time in autumn. Lower predation pressure on adults may constitute the decisive selective advantage of late-season flight. It is suggested that ants, not birds, were the main predators responsible for the temporal trend. 5. Egg mortality was estimated to be low; it is thus unlikely that the late adult period is selected for to reduce the time during which eggs are exposed to predators. 6. In a laboratory experiment, oviposition success was maximal at the time of actual flight peak of E. autumnata, however penalties resulting from sub-optimal timing of oviposition remained limited. [source] Migration of landlocked brown trout in two Scandinavian streams as revealed from trap dataECOLOGY OF FRESHWATER FISH, Issue 3 2004J. Carlsson Abstract,,, Anthropogenic barriers that may interfere or prevent fish migration are commonly found in streams throughout the distribution of salmonids. Construction of fish passages in streams is a common solution to this problem. However, the goal with fish passages is often, at least in Scandinavia, to allow Atlantic salmon (Salmo salar L.) and migratory brown trout (S. trutta L.) to get access to spawning areas above these barriers. Hence, the fish passages may often only be open during the spawning migration of salmonids (late summer to autumn). We present data, on wild brown trout migration, from two trapping systems in two Scandinavian streams showing that intra- and interstream migrations are common throughout the summer and autumn. Moreover, differences in size were found between trap-caught trout and electrofished trout where trapped trout were generally larger than electrofished trout. We suggest that the current regime with fish passages only open parts of the year can have negative effects on populations by depriving trout from the possibility to perform migrations throughout the year. Resumen 1. Barreras de origin antrópico que pueden interferer o prevenir las migraciones de los peces son frecuentes a lo largo de las áreas de distribución de los salmónidos. Una solución común a este problema es la construcción de pasos. Si embargo, el fin general de estos pasos es, por lo menos en Escandinavia, permitir el acceso a las áreas de reproducción por encima de las barreras tanto a salmones (Salmo salar L.) como a truchas migratorias (S. trutta L.). Frecuentemente, estos pasos están solamente abiertos durante el período de migración reproductiva (final del verano y otoño) porque se piensa que este régimen no tiene consecuencias negativas ya que estas especies muestran movimientos muy limitados en otros periodos del año. 2. Presentamos datos sobre migraciones de truchas colectados en dos sistemas de trampas de dos ríos escandinavos. Un río localizado por encima de una catarata inaccesible. El segundo, con una población migratoria de truchas. Los datos indicaron claramente migraciones intensivas a lo largo de todo el período en el que las trampas estuvieron operativas. Ambos ríos mostraron un pico de migración aguas arriba a mediados de Julio. Migraciones aguas abajo fueron raramente observadas en la población por encima de la catarata aunque migraciones aguas abajo en la población del río fueron intensivas al final del otoño. 3. Sugerimos que el régimen actual de pasos de peces que abren solamente partes del año puede tener efectos negativos sobre las poblaciones, al privar a las truchas de la posibilidad de migrar a lo largo del año. Esto puede extenderse a otros sistemas con barreras ya que observamos también migraciones intensivas en la población localizada por encima de la catarata. [source] Population persistence of the parasitoid fly Zaira cinerea (Fallén) (Diptera: Tachinidae) utilizing multiple host carabid beetles with different seasonality and qualityENTOMOLOGICAL SCIENCE, Issue 3 2010Atsushi OHWAKI Abstract Zaira cinerea (Fallén) is a parasitoid fly (Diptera: Tachinidae) that attacks adult carabid beetles. To better understand mechanisms of population persistence in this species, we examined seasonality of host beetle abundance, the frequency of parasitism, and the timing of fly eclosion. In addition, we evaluated host quality using numbers of larvae or puparia per individual beetle as a measure of quality. The fly parasitized only large carabids (,15 mm body length); the lengths of fly puparia reached 7.4,10.8 mm during development in beetle abdomens, and larger hosts are likely essential. Of the 18 large carabid species collected in this study, we chose two, Carabus maiyasanus Bates and Leptocarabus procerulus (Bates), because they were large and abundant (87% of total catch). The two carabids had different phonologies; C. maiyasanus was abundant from spring to summer, and its abundance dropped sharply in autumn, while L. procerulus was abundant in autumn and rare from spring to summer except July. Parasitism was observed in all the months from May to November except June, and adult flies eclosed more than once a year (in early summer, late summer, and mid-autumn), indicating that the species is multivoltine. Host quality of L. procerulus was higher than that of C. maiyasanus. Carabus maiyasanus was mainly used as a host from spring to summer, and L. procerulus was used in autumn. Thus, adult beetles of one or both species are available over most of spring, summer, and autumn, allowing population persistence of this fly species over time. [source] Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary systemENVIRONMENTAL MICROBIOLOGY, Issue 9 2005Anne E. Bernhard Summary Ammonia-oxidizing bacteria (AOB) play an important role in nitrogen cycling in estuaries, but little is known about AOB diversity, distribution and activity in relation to the chemical and physical changes encountered in estuary systems. Although estuarine salinity gradients are well recognized to influence microbial community structure, few studies have examined the influence of varying salinity on the diversity and stability of AOB populations. To investigate these relationships, we collected sediment samples from low-, mid- and high-salinity sites in Plum Island Sound estuary, MA, during spring and late summer over 3 years. Ammonia-oxidizing bacteria distribution and diversity were assessed by terminal restriction fragment length polymorphism (TRFLP) analysis of the ammonia monooxygenase (amoA) gene, and fragments were identified by screening amoA clone libraries constructed from each site. Most striking was the stability and low diversity of the AOB community at the high-salinity site, showing little variability over 3 years. Ammonia-oxidizing bacteria at the high-salinity site were not closely related to any cultured AOB, but were most similar to Nitrosospira spp. Ammonia-oxidizing bacteria at the mid- and low-salinity sites were distributed among Nitrosospira- like sequences and sequences related to Nitrosomonas ureae/oligotropha and Nitrosomonas sp. Nm143. Our study suggests that salinity is a strong environmental control on AOB diversity and distribution in this estuary. [source] Hepatotoxic cyanobacterial blooms in the lakes of northern PolandENVIRONMENTAL TOXICOLOGY, Issue 5 2005Joanna Mankiewicz Abstract The lakes of northern Poland are among the recreational sites most valued by Polish and German holiday makers. Given the socioeconomic importance of these lakes, water quality should be maintained at high levels for such intensive recreational purposes. In 2002 studies of species composition, biomass, and toxin production by phytoplankton and the attendant physicochemical variables were performed in order to assess the risk of cyanobacterial blooms in selected northern lakes: Lakes Jeziorak, Jagodne, Szymoneckie, Szymon, Taltowisko, Siecino, and Trzesiecko. The research showed that total phosphorus (0.1 mg P/L) and total nitrogen (1.5 mg N/L) in the studied lakes almost exceeded the permissible limits for eutrophication of water bodies. Most phytoplankton samples were taken in late summer, when cyanobacteria were expected to reach their highest biomass. At the time of sampling most of the lakes were dominated by oscillatorialean and nostocalean species. Average chlorophyll-a concentration was higher than 10 ,g/L in almost all the lakes studied, which corresponded with an average microcystin concentration in the range of 4,5 ,g/L. The main microcystins in the analyzed samples were dmMC-RR, MC-RR, MC-YR, and MC-LR. The results demonstrated a potential for intensive cyanobacterial blooms to appear during the summer in northern Polish lakes. The levels of cyanobacteria found in the lakes investigated indicated that toxicity had reached the first-alert level according to World Health Organization recommendations. If microcystin-producing cyanobacteria dominate, with a microcystin concentration of 2,4 ,g/L, symptoms of toxicity can appear in the swimmers most sensitive to exposure. Analysis of cyanobacterial assemblages in northern Polish lakes also indicated a significant presence of Aphanizomenon species including a Scandinavian species, A. skujae (Skuja) Kom.-Legn. & Cronb. Future investigations of Polish lakes also should assess neurotoxins and study the biology of their producers. This study was the first attempt to evaluate the potential danger of toxic cyanobacterial blooms in the lakes of northern Poland. © 2005 Wiley Periodicals, Inc. Environ Toxicol 20: 499,506, 2005. [source] Temperature and soil moisture effects on dissolved organic matter release from a moorland Podzol O horizon under field and controlled laboratory conditionsEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2007M. I. Stutter Summary Organic upland soils store large amounts of humified organic matter. The mechanisms controlling the leaching of this C pool are not completely understood. To examine the effects of temperature and microbial cycling on C leaching, we incubated five unvegetated soil cores from a Podzol O horizon (from NE Scotland), over a simulated natural temperature cycle for 1 year, whilst maintaining a constant soil moisture content. Soil cores were leached with artificial rain (177 mm each, monthly) and the leachates analysed for dissolved organic carbon (DOC) and their specific C-normalized UV absorbance determined (SUVA, 285 nm). Monthly values of respiration of the incubated soils were determined as CO2 efflux. To examine the effects of vegetation C inputs and soil moisture, in addition to temperature, we sampled O horizon pore waters in situ and collected five additional field soil cores every month. The field cores were leached under controlled laboratory conditions. Hysteresis in the monthly amount of DOC leached from field cores resulted in greater DOC on the rising, than falling temperature phases. This hysteresis suggested that photosynthetic C stimulated greater DOC losses in early summer, whereas limitations in the availability of soil moisture in late summer suppressed microbial decomposition and DOC loss. Greater DOC concentrations of in-situ pore waters than for any core leachates were attributed to the effects of soil drying and physico-chemical processes in the field. Variation in the respiration rates for the incubated soils was related to temperature, and respiration provided a greater pathway of C loss (44 g C m,2 year,1) than DOC (7.2 g C m,2 year,1). Changes in SUVA over spring and summer observed in all experimental systems were related to the period of increased temperature. During this time, DOC became less aromatic, which suggests that lower molecular weight labile compounds were not completely mineralized. The ultimate DOC source appears to be the incomplete microbial decomposition of recalcitrant humified C. In warmer periods, any labile C that is not respired is leached, but in autumn either labile C production ceases, or it is sequestered in soil biomass. [source] SEASONAL CYCLES OF ALLOZYME-BY-CHROMOSOMAL-INVERSION GAMETIC DISEQUILIBRIUM IN DROSOPHILA SUBOBSCURAEVOLUTION, Issue 4 2003Francisco Rodríguez-Trelles Abstract Allozyme loci are frequently found non randomly associated to the chromosomal inversions in which they are included in Drosophila. Two opposite views compete to explain strong allozyme-by-inversion gametic disequilibria: they result from natural selection or, conversely, merely represent remnants of associations accidentally established at the origin of inversions. Empirical efforts aimed at deciding between adaptive and historical scenarios have focused on the spatial distribution of disequilibria. Yet, the evolutionary significance of these associations remains uncertain. I report here the results of a time-series analysis of the seasonal variation of alleles at six allozyme loci (Acph, Lap, Pept-1, Ao, Mpi, and Xdh) in connection with the O chromosomal polymorphisms of D. subobscura. The findings were: (1) in the segment I of the O chromosome, Lap and Pept-1 allozymes changed seasonally in a cyclical fashion within the ST gene arrangement, but they changed erratically within the 3+4 gene configuration; (2) the frequencies of Lap111 and Pept-10,40 within ST dropped to their lowest values in early and late summer, respectively, when the seasonal level of the ST arrangement is lowest. Furthermore, Lap1,11 and Pept-10,40 covary with ST only within these seasons, yet in a fashion inconsistent with these alleles having a major influence on the dynamics of the inversion; (3) seasonal cycling of alleles within inversions were not detected at Acph, Ao, Mpi, and Xdh, yet these loci are nearly monomorphic at the study population, and/or their sampled series were shorter than those for Lap and Pept-1; and (4) simply monitoring allozyme frequencies separately for each inversion proved to be superior, for evidencing the seasonal cycles of the disequilibria, to the use of the D' coefficient of association. Observed seasonal cycles of allozymes within inversions likely reflect natural selection. [source] Seasonal and long-term changes in fishing depth of Lake Constance whitefishFISHERIES MANAGEMENT & ECOLOGY, Issue 5 2010G. THOMAS Abstract, The ecosystem of Lake Constance in central Europe has undergone profound modifications over the last six decades. Seasonal and inter-annual changes in the vertical distribution patterns of whitefish were examined and related to changes in biotic and abiotic gradients. Between 1958 and 2007, the average fishing depth in late summer and autumn was related to two factors influencing food supply of whitefish , lake productivity and standing stock biomass. In years with low food supply, whitefish were harvested from greater depths, where temperatures were up to 4 °C lower. The whitefish's distribution towards colder water might be a bioenergetic optimisation behaviour whereby fish reduce metabolic losses at lower temperatures, or it may result from a reassessment of habitat preference under conditions of limited food supply, according to the ideal free distribution theory. [source] Context-dependent effects of freshwater mussels on stream benthic communitiesFRESHWATER BIOLOGY, Issue 6 2006DANIEL E. SPOONER Summary 1. We asked whether unionid mussels influence the distribution and abundance of co-occurring benthic algae and invertebrates. In a yearlong field enclosure experiment in a south-central U.S. river, we examined the effects of living mussels versus sham mussels (shells filled with sand) on periphyton and invertebrates in both the surrounding sediment and on mussel shells. We also examined differences between two common unionid species, Actinonaias ligamentina (Lamarck 1819) and Amblema plicata (Say 1817). 2. Organic matter concentrations and invertebrate densities in the sediment surrounding mussels were significantly higher in treatments with live mussels than treatments with sham mussels or sediment alone. Organic matter was significantly higher in the sediment surrounding Actinonaias than that surrounding Amblema. Actinonaias was more active than Amblema and may have increased benthic organic matter through bioturbation. 3. Living mussels increased the abundance of periphyton on shells and the abundance and richness of invertebrates on shells, whereas effects of sham mussels were similar to sediment alone. Differences in the amount of periphyton growing on the shells of the two mussel species reflected differences in mussel activity and shell morphology. 4. Differences between living and sham mussel treatments indicate that biological activities of mussels provide ecosystem services to the benthic community beyond the physical habitat provided by shells alone. In treatments containing live mussels we found significant correlations between organic matter and chlorophyll a concentrations in the sediment, organic matter concentrations and invertebrate abundance in the sediment and the amount of chlorophyll a on the sediment and invertebrate abundance. There were no significant correlations among these response variables in control treatments. Thus, in addition to providing biogenic structure as habitat, mussels likely facilitate benthic invertebrates by altering the availability of resources (algae and organic matter) through nutrient excretion and biodeposition. 5. Effects of mussels on sediment and shell periphyton concentrations, organic matter concentrations and invertebrate abundance, varied seasonally, and were strongest in late summer during periods of low water volume, low flow, and high water temperature. 6. Our study demonstrates that freshwater mussels can strongly influence the co-occurring benthic community, but that effects of mussels are context-dependent and may vary among species. [source] Chytrid infections of Daphnia pulicaria: development, ecology, pathology and phylogeny of Polycaryum laeveFRESHWATER BIOLOGY, Issue 4 2006PIETER T. J. JOHNSON Summary 1. We combined ecological surveys, life table studies, microscopy and molecular sequencing to determine the development, ecology, pathology and phylogeny of Polycaryum laeve, an endoparasite of cladocerans. We report the first records of P. laeve from North America, where we have used a polymerase chain reaction primer and microscopic examination to confirm infections in 14 lakes. Infections are highly pathogenic and caused increased mortality, reduced growth, and reproductive castration in Daphnia pulicaria during life table studies. 2. Biweekly data from Allequash Lake (Wisconsin, U.S.A.) throughout 2003 indicated that fecundity and infection prevalence were inversely correlated. Infection prevalence was highest in late winter and early spring (up to 80%) and lowest during late summer. Epidemics were generally followed by sharp declines in host population density (up to 99%). 3. Within the haemocoel of its host, P. laeve forms thick-walled sporangia, which occur systemically in later stages of infection. Fungal thalli associate closely with muscle fibres and connective tissue, leading to degeneration as the infection becomes advanced. Following death of the host, flagellated zoospores are released through an exit papilla on the sporangium. Based on the infection-induced castration of the host and increases in infection prevalence with Daphnia size, we postulate that transmission is horizontal, but may be indirect through an additional host or free-living stage. 4. Molecular and morphological data clearly indicate that P. laeve belongs in the fungal phylum Chytriodiomycota, order Blastocladiales. Based on ribosomal RNA gene sequences and morphological features, we transfer the genus Polycaryum from the Haplosporidia to the Chytridiomycota, and designate a lectotype and epitype for P. laeve. Considering the high prevalence of P. laeve infection within Daphnia populations, the frequency with which we detected infections among lakes, and the keystone importance of large-bodied Daphnia in aquatic food webs, we suggest that P. laeve may exert a regulatory influence on Daphnia populations in lake ecosystems. [source] Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakesFRESHWATER BIOLOGY, Issue 10 2005MARTIN SØNDERGAARD Summary 1.,Concentrations of phosphorus, nitrogen and silica and alkalinity were monitored in eight shallow and four deep Danish lakes for 13 years following a phosphorus loading reduction. The aim was to elucidate the seasonal changes in nutrient concentrations during recovery. Samples were taken biweekly during summer and monthly during winter. 2.,Overall, the most substantive changes in lake water concentrations were seen in the early phase of recovery. However, phosphorus continued to decline during summer as long as 10 years after the loading reduction, indicating a significant, albeit slow, decline in internal loading. 3.,Shallow and deep lakes responded differently to reduced loading. In shallow lakes the internal phosphorus release declined significantly in spring, early summer and autumn, and only non-significantly so in July and August. In contrast, in deep lakes the largest reduction occurred from May to August. This difference may reflect the much stronger benthic pelagic-coupling and the lack of stratification in shallow lakes. 4.,Nitrogen only showed minor changes during the recovery period, while alkalinity increased in late summer, probably conditioned by the reduced primary production, as also indicated by the lower pH. Silica tended to decline in winter and spring during the study period, probably reflecting a reduced release of silica from the sediment because of enhanced uptake by benthic diatoms following the improved water transparency. 5.,These results clearly indicate that internal loading of phosphorus can delay lake recovery for many years after phosphorus loading reduction, and that lake morphometry (i.e. deep versus shallow basins) influences the patterns of change in nutrient concentrations on both a seasonal and interannual basis. [source] Environmental signals for seed germination reflect habitat adaptations in four temperate CaryophyllaceaeFUNCTIONAL ECOLOGY, Issue 3 2008F. Vandelook Summary 1Requirements for dormancy break and seed germination are specific for all species and depend chiefly on phylogeny, geographical distribution, habitat preference and life cycle. Studying germination requirements of closely related species with a similar geographic distribution allows one to attribute variation in germination requirements to differences in habitat preference between the species. 2We investigated requirements for dormancy break and the effect of environmental signals on induction of germination in seeds of four closely related Caryophyllaceae species growing in a variety of habitats (Moehringia trinervia, Stellaria holostea, S. nemorum and S. graminea). The species studied depend on disturbances in the vegetation for seed germination and subsequent seedling establishment. 3Seedlings of all four species emerged both in summer and spring. Stellaria nemorum and M. trinervia, both growing in temperate forests, emerged mainly in summer under a closed forest canopy. Seeds of S. graminea, occurring in grasslands, did germinate in summer at an open site, but could not germinate under a closed forest canopy. Seedlings of S. holostea were observed in late summer when buried at an open site or in early spring when sown in a forest patch. 4Seeds of S. holostea and M. trinervia were completely dormant at dispersal in early summer, while germination was low in fresh seeds of S. graminea and S. nemorum. Dormancy was broken, to a certain extent, during all three after-ripening treatments applied (dry storage, cold and warm stratification). 5The effect of three gap-detection signals (light, fluctuating temperatures, nitrates) on germination of fresh and dry stored seeds was tested. Seeds of S. holostea only germinated in response to daily fluctuating temperatures. Although light was the most important signal affecting germination of S. graminea and M. trinervia, we also observed a positive effect of fluctuating temperatures and nitrates on germination. The effect of fluctuating temperatures on germination of S. nemorum was small in both light and dark incubated seeds. Seed germination in this species generally occurred in response to addition of light and nitrates. 6This study on dormancy breaking and germination requirements of the four species enabled us to expose, sometimes subtle, differences in germination requirements. These contrasting germination patterns were related to differences in the species' habitat preferences. [source] Growth-enhanced fish can be competitive in the wildFUNCTIONAL ECOLOGY, Issue 5 2001J. I. Johnsson Summary 1,The widespread commercial interest in producing growth-enhanced organisms has raised concerns about ecological consequences, emphasizing the need to understand the costs and benefits associated with accelerated growth in nature. Here, sustained-release growth hormone (GH) implants were used to estimate the competitive ability of growth-enhanced fish in the wild. Growth rate, movements and survival over winter were compared between GH-implanted and control Brown Trout in a natural stream. The study was repeated over two consecutive years. 2,GH treatment had no effect on recapture rates, indicating that mortality rates did not differ between GH-treated and control fish. More GH-treated trout (63%) than control fish (41%) were recaptured within their 10 m section of release. Thus, GH-treated fish were more stationary than control fish over winter. 3,GH-treated fish grew about 20% faster than control fish. This was mainly because of a three-fold growth rate increase in GH-treated fish in late summer, whereas growth rates over winter did not differ significantly between treatment groups. These results were consistent over both replicate years. 4,This first study of growth-enhanced fish in the wild shows that they can survive well and therefore may out-compete normal fish with lower growth rates. Although selection against rapid growth may be more intense at other life-history stages and/or during periods of extreme climate conditions, our findings raise concerns that released or escaped growth-enhanced salmonids may compete successfully with resident fish. It is clear that the potential ecological risks associated with growth-enhanced fish should not be ignored. [source] Unravelling the microbial role in ooid formation , results of an in situ experiment in modern freshwater Lake Geneva in SwitzerlandGEOBIOLOGY, Issue 4 2008K. PLEE ABSTRACT The microbial role in the formation of the cortex of low-Mg calcite freshwater ooids in western part of Lake Geneva in Switzerland has been suggested previously, but not demonstrated conclusively. Early work mostly concentrated in hypersaline milieus, and hence little is known about their genesis in freshwater environments. We designed an in situ experiment to mimic the natural process of low-Mg calcite precipitation. A special device was placed in the ooid-rich bank of the lake. It contained frosted glass (SiO2) slides, while quartz (SiO2) is the most abundant mineral composition of ooid nuclei that acted as artificial substrates to favour microbial colonization. Microscopic inspection of the slides revealed a clear seasonal pattern of carbonate precipitates, which were always closely associated with biofilms that developed on the surface of the frosted slides containing extracellular polymeric substance, coccoid and filamentous cyanobacteria, diatoms and heterotrophic bacteria. Carbonate precipitation peaks during early spring and late summer, and low-Mg calcite crystals mostly occur in close association with filamentous and coccoid cyanobacteria (e.g. Tolypothrix, Oscillatoria and Synechococcus, Anacystis, respectively). Further scanning electron microscope inspection of the samples revealed low-Mg calcite with crystal forms varying from anhedral to euhedral rhombohedra, depending on the seasons. Liquid cultures corroborate the in situ observations and demonstrate that under the same physicochemical conditions the absence of biofilms prevents the precipitation of low-Mg calcite crystals. These results illustrate that biofilms play a substantial role in low-Mg calcite ooid cortex formation. It further demonstrates the involvement of microbes in the early stages of ooid development. Combined with ongoing microbial cultures under laboratory-controlled conditions, the outcome of our investigation favoured the hypothesis of external microbial precipitation of low-Mg calcite as the main mechanism involved in the early stage of ooid formation in freshwater Lake Geneva. [source] ,Aus so prosaischen Dingen wie Kartoffeln, Straßen, Traktoren werden poetische Dinge!': Brecht, Sinn und Form, and Strittmatter's KatzgrabenGERMAN LIFE AND LETTERS, Issue 1 2003Matthew Philpotts This article takes as its starting,point an essay written by Bertolt Brecht in praise of the GDR playwright Erwin Strittmatter and his Socialist Realist drama, Katzgraben, which was staged by the Berliner Ensemble in May 1953. Published in the late summer of 1953 in Sinn und Form, this rather neglected essay is of significance because Brecht adopts in it a highly orthodox GDR position at a time when he was otherwise making dissenting interventions in GDR cultural politics. Publication of the essay, at a time when political pressure on Brecht had eased, is evidence that his interest in Strittmatter's play was not merely a short,term tactical manoeuvre to placate the SED regime. Rather, it was part of a consistent belief in the necessity of demonstrating what Brecht perceived to be the genuine achievements of the GDR. The events of 17 June, and the fascist mindset which Brecht saw underlying them, only served to reinforce this necessity in his mind. Brecht's pre,occupation with Katzgraben has a broader significance in highlighting the tendency in Brecht criticism to over,privilege tactical explanations for his behaviour in the GDR and in demonstrating that his cultural,political dissent was vitiated all the time by consistent ideological assent. [source] Linking environmental warming to the fitness of the invasive clam Corbicula flumineaGLOBAL CHANGE BIOLOGY, Issue 12 2009MARKUS WEITERE Abstract Climate warming is discussed as a factor that can favour the success of invasive species. In the present study, we analysed potential fitness gains of moderate warming (3 °C above field temperature) on the invasive clam Corbicula fluminea during summer and winter. The experiments were conducted under seminatural conditions in a bypass-system of a large river (Rhine, Germany). We showed that warming in late summer results in a significant decrease in the clams' growth rates (body mass and shell length increase) and an increase in mortality rate. The addition of planktonic food dampens the negative effect of warming on the growth rates. This suggests that the reason for the negative growth effect of temperature increase in late summer is a negative energetic balance caused by an enhanced metabolic rate at limited food levels. Warming during early summer revealed contrasting effects with respect of body mass (no warming effect) and shell length (increased shell growth with warming). This differential control of both parameters further enhances the loss of the relative (size-specific) body mass with warming. In contrast, warming in winter had a consistently positive effect on the clams' growth rate as demonstrated in two independent experiments. Furthermore, the reproduction success (as measured by the average number of larvae per clam) during the main breeding period (April) was strongly enhanced by experimental warming during winter, i.e. by eight times during the relatively cold winter 2005/2006 and by 2.6 times during the relatively warm winter 2007/2008. This strong, positive effect of moderate winter warming on the clams' fitness is probably one reason for the recent invasion success of C. fluminea in the northern hemisphere. However, warm summer events might counteract the positive winter warming effect, which could balance out the fitness gains. [source] Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soilsGLOBAL CHANGE BIOLOGY, Issue 7 2009MATTHEW D. WALLENSTEIN Abstract Arctic soils contain large amounts of organic matter due to very slow rates of detritus decomposition. The first step in decomposition results from the activity of extracellular enzymes produced by soil microbes. We hypothesized that potential enzyme activities are low relative to the large stocks of organic matter in Arctic tundra soils, and that enzyme activity is low at in situ temperatures. We measured the potential activity of six hydrolytic enzymes at 4 and 20 °C on four sampling dates in tussock, intertussock, shrub organic, and shrub mineral soils at Toolik Lake, Alaska. Potential activities of N -acetyl glucosaminidase, ,-glucosidase, and peptidase tended to be greatest at the end of winter, suggesting that microbes produced enzymes while soils were frozen. In general, enzyme activities did not increase during the Arctic summer, suggesting that enzyme production is N-limited during the period when temperatures would otherwise drive higher enzyme activity in situ. We also detected seasonal variations in the temperature sensitivity (Q10) of soil enzymes. In general, soil enzyme pools were more sensitive to temperature at the end of the winter than during the summer. We modeled potential in situ,-glucosidase activities for tussock and shrub organic soils based on measured enzyme activities, temperature sensitivities, and daily soil temperature data. Modeled in situ enzyme activity in tussock soils increased briefly during the spring, then declined through the summer. In shrub soils, modeled enzyme activities increased through the spring thaw into early August, and then declined through the late summer and into winter. Overall, temperature is the strongest factor driving low in situ enzyme activities in the Arctic. However, enzyme activity was low during the summer, possibly due to N-limitation of enzyme production, which would constrain enzyme activity during the brief period when temperatures would otherwise drive higher rates of decomposition. [source] Tracking palustrine water seasonal and annual variability in agricultural wetland landscapes using Landsat from 1997 to 2005GLOBAL CHANGE BIOLOGY, Issue 4 2007OFER BEERI Abstract Wetlands densely populate the ecoregion transecting the center of the Prairie Pothole Region (PPR) known as the Missouri Coteau and epicenter to the most productive waterfowl-breeding habitat in North America. These palustrine, depressional basin waters vacillate with regional drought and deluge, so surface water fluctuations over time modulate wetland productivity, habitat, and water quality functions. Models predict formidable effects of climate change on glacial basin surface waters, yet large-scale, long-term observation data are lacking to compare against predicted changes. Current, optical-based water detection models do not delineate marsh vegetation from shallow, turbid, high-chlorophyll waters common to the region. We developed a palustrine wetland spectral model for tracking open surface waters using Landsat imagery, which we evaluated for a 2500 km2 landscape that estimates seasonal and annual open water variability for thousands of individual wetlands in the Missouri Coteau ecoregion. Detection accuracy of 96% was achieved for water bodies greater than a half-pixel in size. We identified shifts in the distribution of water permanence classes within and between years for waters emerging in spring, mid-summer, and late summer from 1997 to 2005 and identified a maximum of 19 047 basins with open water (12% of the landscape) populating 2500 km2. For the 2005 growing season, we observed only 8757 basins with open water (6% of the landscape) for the same area. Declines were greatest for water bodies detected only in spring, suggesting a loss of those wetlands functioning to recharge groundwater stores early in the season and a high sensitivity to observed reductions in snowfall. If landscape factors driving open water coverage and wetland density are similar for the entire Missouri Coteau, we estimate the number of basins containing at least a pixel of water for this region declined from 577 600 to 266 000 between 1997 and 2005. [source] Manipulation of herbage production by altering the pattern of applying nitrogen fertilizerGRASS & FORAGE SCIENCE, Issue 1 2008D. Hennessy Abstract The redistribution of herbage production during the growing season to synchronize herbage supply with feed demand by livestock by altering the application pattern of a range of nitrogen (N) fertilizer rates was studied. Application rates of N were 50, 150 and 250 kg N ha,1 per annum and patterns were with 0·60 of N fertilizer applied before June (treatment RN) and with only 0·20 of N fertilizer before June (treatment IN). Treatments were imposed in a cutting (simulated grazing) experiment (Experiment 1), which was conducted for 2 years and a grazing experiment (Experiment 2) which was conducted for 3 years. In both experiments, herbage production was reduced in April and May and increased in the June,October period on treatment IN relative to RN, but annual herbage production was not significantly affected except in the third year of Experiment 2, when treatment RN had significantly (P < 0·05) higher herbage production than treatment IN. Crude protein (CP) concentration of herbage was lower in April and May on treatment IN than treatment RN. However, CP concentration of herbage was rarely below 150 g kg,1 DM and so it is unlikely that livestock productivity would be compromised. On treatment IN, concentrations of CP in herbage were higher in the late summer than on treatment RN, which may increase livestock productivity during July and August when livestock productivity is often lower. Altering the strategy of application of N fertilizer did not affect in vitro dry matter digestibility of herbage. [source] Setting management limits for the production and utilization of herbage for out-of-season grazingGRASS & FORAGE SCIENCE, Issue 1 2000Laidlaw Three experiments were carried out on perennial ryegrass-dominant swards to provide a basis for recommendations for the limits to (a) building up and timing of utilization of a herbage ,bank' for out-of-season grazing and (b) duration and intensity of early spring grazing in the United Kingdom and Ireland. In experiment 1, the effect of regrowth interval (from 7 September, 20 October, 17 November or 15 December) in autumn on herbage accumulation, leaf turnover and on subsequent spring growth was investigated. Swards regrown from early September reached maximum herbage mass (about 3 t ha,1 DM) and leaf lamina content in mid-November, by which time senescence rate exceeded rate of production of new leaves. New leaf production and senescence rates were greater in swards remaining uncut until December than in those cut in October or November. Time of defoliation up to December had no effect on spring herbage mass in the subsequent spring. Defoliating in March reduced herbage mass in late May by less than 20%. Experiment 2 investigated the progress in herbage growth and senescence in swards regrowing from different times in late summer and autumn to produce herbage for utilization beyond the normal grazing season. Treatments in a randomized block design with three replicates were regrowths from 19 July, 8 August, 30 August and 20 September. Based on a lower ceiling of leaf and total herbage mass being reached with progressively later regrowths, beyond which leaf senescence generally exceeded leaf production and herbage mass declined, it was concluded that currently recommended rotation lengths for this period should extend from 3 weeks in late July to 8 weeks for swards previously grazed in mid-September. In both experiments, leaf senescence commenced earlier (by one leaf-age category) than previously published estimates and so brought forward the time at which senescence rates balanced leaf growth rates. In experiment 3, designed to evaluate the effect of daily grazing period and intensity in early spring on herbage regrowth, dairy cows grazed successive plots (replicates) for 2 or 4 h each day at two intensities (target residual heights of 5 or 7 cm) in March to mid-April. Regrowth rate was similar in all treatments including the ungrazed control, despite soil moisture content being relatively high on occasions. Tiller density was significantly reduced in May by grazing plots in early or mid-April. It is concluded that in autumn there are limits to which rotation lengths should be extended to produce herbage for out-of-season grazing owing to attainment of ceiling yields. Although utilization in early spring may reduce herbage availability in spring, out-of-season utilization need not reduce herbage growth rates in early spring. [source] Nitrogen balance and seasonal fluctuations in soil nitrogen contents in a corn (Zea mays L)-rye (Secale cereale L) rotation fieldGRASSLAND SCIENCE, Issue 1 2005Yuzo Kurokawa Abstract In a corn (Zea mays L)-rye (Secale cereale L) rotation field, the N output (plant uptake) and N input (crop residue and fertilizer applied) were measured for two years in order to evaluate the N balance in a forage production field. The soil was Low-humic Andosol (mesic Typic Hapludand). The disappearance of crop residues on both a dry matter and N basis, and the seasonal fluctuations of total, inorganic, and available soil N content in the field were investigated. The interaction between the nitrogen balance and the soil N contents are discussed. The total plant N uptake of the corn and rye exceeded the sum of the N input of the fertilizer applied and the N from crop residues, so the N balance of the corn-rye rotation had a negative value (two year average: ,8.4 gN m,2). After the gradual disappearance of crop residue on the dry matter basis, rapid disappearance on the N basis was observed. At the same time, the C/N ratio decreased to less than 20. The soil available (38.4,55.3 mg kg,1) and inorganic (21.5,45.2 mg kg,1) N had their lowest values in spring. After they increased in early summer, they decreased in late summer and increased in autumn. The total N (0.5,0.7%) gradually decreased during the experimental period. The results indicated that the soil-available N and inorganic N in the present study were highly dependent on the fertilizer-applied N. The relation among management practices, N input and soil available N contents are discussed. It is suggested that the negative N balance is one of the causes for a decrease in soil total N. [source] Predicting river water temperatures using the equilibrium temperature concept with application on Miramichi River catchments (New Brunswick, Canada)HYDROLOGICAL PROCESSES, Issue 11 2005Daniel Caissie Abstract Water temperature influences most of the physical, chemical and biological properties of rivers. It plays an important role in the distribution of fish and the growth rates of many aquatic organisms. Therefore, a better understanding of the thermal regime of rivers is essential for the management of important fisheries resources. This study deals with the modelling of river water temperature using a new and simplified model based on the equilibrium temperature concept. The equilibrium temperature concept is an approach where the net heat flux at the water surface can be expressed by a simple equation with fewer meteorological parameters than required with traditional models. This new water temperature model was applied on two watercourses of different size and thermal characteristics, but within a similar meteorological region, i.e., the Little Southwest Miramichi River and Catamaran Brook (New Brunswick, Canada). A study of the long-term thermal characteristics of these two rivers revealed that the greatest differences in water temperatures occurred during mid-summer peak temperatures. Data from 1992 to 1994 were used for the model calibration, while data from 1995 to 1999 were used for the model validation. Results showed a slightly better agreement between observed and predicted water temperatures for Catamaran Brook during the calibration period, with a root-mean-square error (RMSE) of 1·10 °C (Nash coefficient, NTD = 0·95) compared to 1·45 °C for the Little Southwest Miramichi River (NTD = 0·94). During the validation period, RMSEs were calculated at 1·31 °C for Catamaran Brook and 1·55 °C for the Little Southwest Miramichi River. Poorer model performances were generally observed early in the season (e.g., spring) for both rivers due to the influence of snowmelt conditions, while late summer to autumn modelling performances showed better results. Copyright © 2005 John Wiley & Sons, Ltd. [source] Characteristics of soil moisture in permafrost observed in East Siberian taiga with stable isotopes of waterHYDROLOGICAL PROCESSES, Issue 6 2003A. Sugimoto Abstract Soil moisture and its isotopic composition were observed at Spasskaya Pad experimental forest near Yakutsk, Russia, during summer in 1998, 1999, and 2000. The amount of soil water (plus ice) was estimated from volumetric soil water content obtained with time domain reflectometry. Soil moisture and its ,18O showed large interannual variation depending on the amount of summer rainfall. The soil water ,18O decreased with soil moisture during a dry summer (1998), indicating that ice meltwater from a deeper soil layer was transported upward. On the other hand, during a wet summer (1999), the ,18O of soil water increased due to percolation of summer rain with high ,18O values. Infiltration after spring snowmelt can be traced down to 15 cm by the increase in the amount of soil water and decrease in the ,18O because of the low ,18O of deposited snow. About half of the snow water equivalent (about 50 mm) recharged the surface soil. The pulse of the snow meltwater was, however, less important than the amount of summer rainfall for intra-annual variation of soil moisture. Excess water at the time just before soil freezing, which is controlled by the amount of summer rainfall, was stored as ice during winter. This water storage stabilizes the rate of evapotranspiration. Soil water stored in the upper part of the active layer (surface to about 120 cm) can be a water source for transpiration in the following summer. On the other hand, once water was stored in the lower part of the active layer (deeper than about 120 cm), it would not be used by plants in the following summer, because the lower part of the active layer thaws in late summer after the plant growing season is over. Copyright © 2002 John Wiley & Sons, Ltd. [source] The dynamics of unattached benthic macroalgal accumulations in the Swan,Canning EstuaryHYDROLOGICAL PROCESSES, Issue 13 2001Helen Astill Abstract It has been suggested that macroalgal accumulations may impact on benthic nutrient cycling by promoting remineralization of sedimentary nutrients, otherwise inaccessible, and act as sinks/sources for dissolved nutrients in the water column. However, little consideration has been given to the time taken for these impacts to occur, and if accumulations persist long enough in a region for impacts to occur. In this study, accumulations were characterized seasonally, according to biomass, height relative to water depth, and organic content of the underlying sediment, from November 1996 to August 1997, in the Swan,Canning Estuary. Persistence of accumulations was measured from late summer to mid-winter in 1997, by tagging individual plants and recording the time tagged plants persisted at 10 sites. In summer 1998, physicochemical profiles of accumulations were measured over 24 h, at two locations: one with relatively low sediment organic content (SOCn) (1·5% LOI) and one with relatively high SOC (6% LOI). Accumulations rarely exceeded 25 cm in height, regardless of water column depth, and ranged between 100 and 500 g dwt m,2. Macroalgae persisted between one week, in relatively well-flushed regions, to one month in areas with poor flushing. Over the entire diurnal period, almost 100% of incident light was attenuated at the bottom of all accumulations. Dissolved oxygen levels at the bottom of accumulations were generally depressed, particularly at night, with hypoxia (1 mg l,1) recorded at the high SOC site at 03 : 00 h. No significant differences in FRP concentrations (approximately 30,60 µg l,1) were recorded between sites, or within accumulation profiles. Ammonium levels were greatly raised inside accumulations at the high SOC site by 03 : 00 h (10 and 300 µg l,1, inside and outside, respectively). The results show that, where SOC is high, conditions within accumulations are affected. Impacts occurred within 24 h; well within the period for which accumulations persist. These results also indicate that regulation of hydrological regimes in estuarine systems may result in increased persistence of macroalgal accumulations, and associated water quality problems. Copyright © 2001 John Wiley & Sons, Ltd. [source] The annual cycle of heavy precipitation across the United Kingdom: a model based on extreme value statisticsINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 12 2009D. Maraun Abstract The annual cycle of extreme 1-day precipitation events across the UK is investigated by developing a statistical model and fitting it to data from 689 rain gauges. A generalized extreme-value distribution (GEV) is fit to the time series of monthly maxima, across all months of the year simultaneously, by approximating the annual cycles of the location and scale parameters by harmonic functions, while keeping the shape parameter constant throughout the year. We average the shape parameter of neighbouring rain gauges to decrease parameter uncertainties, and also interpolate values of all model parameters to give complete coverage of the UK. The model reveals distinct spatial patterns for the estimated parameters. The annual mean of the location and scale parameter is highly correlated with orography. The annual cycle of the location parameter is strong in the northwest UK (peaking in late autumn or winter) and in East Anglia (where it peaks in late summer), and low in the Midlands. The annual cycle of the scale parameter exhibits a similar pattern with strongest amplitudes in East Anglia. The spatial patterns of the annual cycle phase suggest that they are linked to the dominance of frontal precipitation for generating extreme precipitation in the west and convective precipitation in the southeast of the UK. The shape parameter shows a gradient from positive values in the east to negative values in some areas of the west. We also estimate 10-year and 100-year return levels at each rain gauge, and interpolated across the UK. Copyright © 2008 Royal Meteorological Society [source] |