Late Succession (late + succession)

Distribution by Scientific Domains


Selected Abstracts


Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps

ENVIRONMENTAL MICROBIOLOGY, Issue 9 2006
K. Deiglmayr
Summary Changes in community structure and activity of the dissimilatory nitrate-reducing community were investigated across a glacier foreland in the Central Alps to gain insight into the successional pattern of this functional group and the driving environmental factors. Bulk soil and rhizosphere soil of Poa alpina was sampled in five replicates in August during the flowering stage and in September after the first snowfalls along a gradient from 25 to 129 years after deglaciation and at a reference site outside the glacier foreland (> 2000 years deglaciated). In a laboratory-based assay, nitrate reductase activity was determined colorimetrically after 24 h of anaerobic incubation. In selected rhizosphere soil samples, the community structure of nitrate-reducing microorganisms was analysed by restriction fragment length polymorphism (RFLP) analysis using degenerate primers for the narG gene encoding the active site of the membrane-bound nitrate reductase. Clone libraries of the early (25 years) and late (129 years) succession were constructed and representative clones sequenced. The activity of the nitrate-reducing community increased significantly with age mainly due to higher carbon and nitrate availability in the late succession. The community structure, however, only showed a small shift over the 100 years of soil formation with pH explaining a major part (19%) of the observed variance. Clone library analysis of the early and late succession pointed to a trend of declining diversity with progressing age. Presumably, the pressure of competition on the nitrate reducers was relatively low in the early successional stage due to minor densities of microorganisms compared with the late stage; hence, a higher diversity could persist in this sparse environment. These results suggest that the nitrate reductase activity is regulated by environmental factors other than those shaping the genetic structure of the nitrate-reducing community. [source]


Litter species composition influences the performance of seedlings of grassland herbs

FUNCTIONAL ECOLOGY, Issue 3 2006
H. QUESTED
Summary 1This study examines the impacts of plant litter species identity and the composition of litter mixtures on seedling recruitment in the context of land-use change (abandonment) in conservationally important southern Swedish semi-natural grasslands. 2We found that plant litter had marked positive effects on the seedling recruitment of two common grassland species, and that these effects varied strongly with the species identity of the litter. 3There was no consistent evidence that litters of species typical of earlier succession had a greater positive impact on recruitment than those typical of late succession. 4The impact of mixtures of the five litter types examined was generally as expected based on the impacts of single-species litters and their contribution to the litter mixture, as predicted by the biomass ratio hypothesis. However, this was not the case for all litter and seedling species combinations, and some interactions were evident. 5Species identity of litter is important even in multispecies litter mixtures. Changes in plant species dominance (and hence the proportions of litter of different species), as a result of shifts in land use, are likely to result in changes in seedling performance, with potential consequences for the persistence of plant populations in former semi-natural grasslands. [source]


Arctiid moth ensembles along a successional gradient in the Ecuadorian montane rain forest zone: how different are subfamilies and tribes?

JOURNAL OF BIOGEOGRAPHY, Issue 1 2006
Nadine Hilt
Abstract Aim, We examined changes in the species diversity and faunal composition of arctiid moths along a successional gradient at a fine spatial scale in one of the world's hot spots for moths, the Andean montane rain forest zone. We specifically aimed to discover whether moth groups with divergent life histories respond differentially to forest recovery. Location, Southern Ecuador (province Zamora-Chinchipe) along a gradient from early successional stages to mature forest understorey at elevations of 1800,2005 m a.s.l. Methods, Moths were sampled with weak light traps at 21 sites representing three habitat categories (early and late succession, mature forest understorey), and were analysed at species level. Relative proportions were calculated from species numbers as well as from specimen numbers. Fisher's , was used as a measure of local diversity, and for ordination analyses non-metric multidimensional scaling (NMDS) was carried out. Results, Proportions of higher arctiid taxa changed distinctly along the successional gradient. Ctenuchini (wasp moths) contributed more strongly to ensembles in natural forest, whereas Lithosiinae (lichen moths) decreased numerically with forest recovery. Arctiid species diversity (measured as Fisher's ,) was high in all habitats sampled. The three larger subordinated taxa contributed differentially to richness: Phaegopterini (tiger moths) were always the most diverse clade, followed by Ctenuchini and Lithosiinae. Local species diversity was higher in successional habitats than in forest understorey, and this was most pronounced for the Phaegopterini. Dominance of a few common species was higher, and the proportion of species represented as singletons was lower, than reported for many other tropical arthropod communities. NMDS revealed a significant segregation between ensembles from successional sites and from forest understorey for all larger subordinated taxa (Phaegopterini, Ctenuchini, Lithosiinae). Abandoned pastures held an impoverished, distinct fauna. Faunal segregation was more pronounced for rare species. Ordination axes reflected primarily the degree of habitat disturbance (openness of vegetation, distance of sites from mature forest) and, to a lesser extent, altitude, but not distance between sampling sites. Main conclusions, Despite the geographical proximity of the 21 sites and the pronounced dispersal abilities of adult arctiid moths, local ecological processes were strong enough to allow differentiation between ensembles from mature forest and disturbed sites, even at the level of subfamilies and tribes. Differences in morphology and life-history characteristics of higher arctiid taxa were reflected in their differential representation (proportions of species and individuals) at the sites, whereas patterns of alpha and beta diversity were concordant. However, concordance was too low to allow for reliable extrapolation, in terms of biodiversity indication, from one tribe or subfamily to the entire family Arctiidae. Phaegopterini (comprising more putative generalist feeders during the larval stages) benefited from habitat disturbance, whereas Ctenuchini (with host-specialist larvae) were more strongly affiliated with forest habitats. [source]


Is the productivity of vegetation plots higher or lower when there are more species?

OIKOS, Issue 2 2003
Variable predictions from interaction of the, competitive dominance effect' on the habitat templet, sampling effect'
Using a habitat templet model, we predict that the productivity (total biomass) of plots within a plant community may be positively, negatively or not at all related to variation in the number of species per plot, depending on successional stage (time since major disturbance) and habitat carrying capacity (reflecting the total resource supplying power of the habitat). For plots of a given size, a positive relationship between productivity and species richness is predicted in recently disturbed habitats because local neighbourhoods here will have been assembled largely stochastically, usually from a pool of available species with a right-skewed size frequency distribution. Hence, in the earliest stages of succession, plots will have relatively high total biomass only if they contain at least some of the relatively uncommon larger species which will, in turn, be more likely in those neighbourhoods that contain more species (the sampling effect). Among these will also be some of the more common smaller species; hence, these high biomass, species-rich plots should have relatively low species evenness, in contrast to what is predicted under effects involving species complementarity. In late succession, the plots with high total biomass will still be those that contain relatively large species but these plots will now contain relatively few species owing to increased competitive exclusion over time (the competitive dominance effect). In intermediate stages of succession, no relationship between plot productivity and species richness is predicted because the opposing sampling and competitive dominance effects cancel each other out. We predict that the intensity of both the sampling and competitive dominance effects on the productivity/species richness relationship will decrease with decreasing habitat carrying capacity (e.g. decreasing substrate fertility) owing to the inherently lower variance in between-plot productivity that is predicted for more resource-impoverished habitats. [source]