Home About us Contact | |||
Late Eocene (late + eocene)
Selected AbstractsTHE EVOLUTION OF DIOECY, HETERODICHOGAMY, AND LABILE SEX EXPRESSION IN ACEREVOLUTION, Issue 11 2007S. S. Renner The northern hemisphere tree genus Acer comprises 124 species, most of them monoecious, but 13 dioecious. The monoecious species flower dichogamously, duodichogamously (male, female, male), or in some species heterodichogamously (two morphs that each produce male and female flowers but at reciprocal times). Dioecious species cannot engage in these temporal strategies. Using a phylogeny for 66 species and subspecies obtained from 6600 nucleotides of chloroplast introns, spacers, and a protein-coding gene, we address the hypothesis (Pannell and Verdú, Evolution 60: 660,673. 2006) that dioecy evolved from heterodichogamy. This hypothesis was based on phylogenetic analyses (Gleiser and Verdú, New Phytol. 165: 633,640. 2005) that included 29,39 species of Acer coded for five sexual strategies (duodichogamous monoecy, heterodichogamous androdioecy, heterodichogamous trioecy, dichogamous subdioecy, and dioecy) treated as ordered states or as a single continuous variable. When reviewing the basis for these scorings, we found errors that together with the small taxon sample, cast doubt on the earlier inferences. Based on published studies, we coded 56 species of Acer for four sexual strategies, dioecy, monoecy with dichogamous or duodichogamous flowering, monoecy with heterodichogamous flowering, or labile sex expression, in which individuals reverse their sex allocation depending on environment,phenotype interactions. Using Bayesian character mapping, we infer an average of 15 transformations, a third of them involving changes from monoecy-cum-duodichogamy to dioecy; less frequent were changes from this strategy to heterodichogamy; dioecy rarely reverts to other sexual systems. Contra the earlier inferences, we found no switches between heterodichogamy and dioecy. Unexpectedly, most of the species with labile sex expression are grouped together, suggesting that phenotypic plasticity in Acer may be a heritable sexual strategy. Because of the complex flowering phenologies, however, a concern remains that monoecy in Acer might not always be distinguishable from labile sex expression, which needs to be addressed by long-term monitoring of monoecious trees. The 13 dioecious species occur in phylogenetically disparate clades that date back to the Late Eocene and Oligocene, judging from a fossil-calibrated relaxed molecular clock. [source] Geological age of the Yokawa Formation of the Kobe Group (Japan) on the basis of terrestrial mammalian fossilsISLAND ARC, Issue 3 2007Takehisa Tsubamoto Abstract The age of the Yokawa Formation of the Cenozoic Kobe Group distributed in Hyogo Prefecture of western Japan based on mammalian fossils is discussed. Two fossil dental specimens of terrestrial mammals discovered from the lowest part of the Yokawa Formation in the Sanda area are described. These two fossils described here are: (i) a right mandibular fragment with p2,m3 of Bothriodon sandaensis sp. nov. (selenodont anthracotheriid artiodactyl), which appears to be the most primitive among the species of the genus; and (ii) right m1,m3 of cf. Hyrachyus sp. (primitive rhinocerotoid perissodactyl). In the lower part of the Yokawa Formation, Zaisanamynodon (amynodontid perissodactyl) was previously reported. The morphology (,evolutionary stage') of B. sandaensis is indicative of the latest Middle to Late Eocene, that of cf. Hyrachyus sp. is indicative of the Early to Middle Eocene, and Zaisanamynodon is indicative of the Late Middle to Late Eocene. Therefore, the fossil mammals of the Yokawa Formation indicate an latest Middle Eocene (ca. 38 Ma) correlation for the lower part of the formation, as a working hypothesis. Although the resolution of the geological age based on these mammalian fossils is relatively low compared to that based on marine index fossils, this result is concordant with the recent radiometric correlation of the lower part of the Yokawa Formation in the Sanda area. [source] A New Species of Amphirhagatherium (Choeropotamidae, Artiodactyla, Mammalia) from the Late Eocene Headon Hill Formation of Southern England and Phylogeny of Endemic European ,anthracotherioids'PALAEONTOLOGY, Issue 5 2001Jerry J. Hooker A new species of artiodactyl, Amphirhagatheriumedwardsi sp. nov., is described from the Late Eocene (Priabonian) Headon Hill Formation of the Hampshire Basin, southern England. The Haplobunodontidae, in which Amphirhagatherium is usually placed, has recently been combined with the monotypic Choeropotamidae, both essentially European endemic families. New anatomical information is forthcoming from both the new species and recently published data on related species. A cladistic analysis of taxa included in the two families, the possible anthracotheriid Thaumastognathus and the enigmatic Tapirulus, was conducted to test the relationships implied by observed morphological similarities. The genus Anthracobunodon is shown to be paraphyletic and is here synonymized with Amphirhagatherium. Choeropotamus and Thaumastognathus are sister taxa nested with three species of Haplobunodon and Haplobunodon is paraphyletic and polyphyletic, but this clade is too weakly resolved internally for reliable taxonomic changes. LophiobunodonTapirulus are sister taxa nested with a fourth species of Haplobunodon. The synonymy of the Haplobunodontidae with the Choeropotamidae is upheld and close relationship of the family with the Anthracotheriidae is argued to be unlikely. Choeropotamids are inferred to have had mixed frugivorous and browsing herbivorous diets. They seem to have diversified in the northern parts of Europe, some terminal taxa having originated following southward dispersal. [source] New Taxa of Chrysomelidae (Insecta: Coleoptera) from Rovno Amber, Late EoceneACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2010Konstantin NADEIN Abstract: Leaf beetles Chrysomelidae of Rovno amber, from the Late Eocene, are recorded and described. Chrysomelidae of Rovno amber are represented by three subfamilies: Galerucinae (Alticini), Chrysomelinae, and Eumolpinae. Two new genera and three new species of Alticini: Manobiomorpha Nadein, gen. nov. (type species Manobiomorpha eocenica Nadein, sp. nov.), Psyllototus Nadein, gen. nov. (type species Psyllototus progenitor Nadein, sp. nov.), and Crepidodera decolorata Nadein et Perkovsky, sp. nov. are described. A new chrysomeline genus and species Paleophaedon minutus Nadein gen. nov. et sp. nov. is described. Probable trophic association of Crepidodera decolorata sp. nov., the taxonomic positions of Manobiomorpha gen. nov. and Psyllototus gen. nov., and the composition of leaf beetle faunas of Middle and Late Eocene of Europe are discussed. [source] Community Structure in the Amber Forest: Study of the Arthropod Syninclusia in the Rovno Amber (Late Eocene of Ukraine)ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2010Evgeny E. PERKOVSKY Abstract: Arthropoden syninclusions in the Late Eocene Rovno amber were examined using ,2 to reveal correlation of the component groups (some taxa of Diptera, ants, aphids, and mites) supposedly indicative of the biocoenotic relationships in the ancient amber forest. Three tightly correlated groups were identified, representing a putative aerial plankton guild (Chironomidae + Ceratopogonidae) and two tree-trunk guilds, one of which (Dolichopodidae +Germaraphis) is possibly connected to more open or/and more hygrophilous habitats than the other (Sciara zone Diptera +"Acorus" rhombeus). The ants were not linked with any of the above components. [source] Cenozoic Stratigraphy Deformation History in the Central and Eastern of Qaidam Basin by the Balance Section Restoration and its ImplicationACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2009Dongliang LIU Abstract: The Qaidam Basin, located in the northern margin of the Qinghai,Tibet Plateau, is a large Mesozoic,Cenozoic basin, and bears huge thick Cenozoic strata. The geologic events of the Indian-Eurasian plate,plate collision since ,55 Ma have been well recorded. Based on the latest progress in high-resolution stratigraphy, a technique of balanced section was applied to six pieces of northeast-southwest geologic seismic profiles in the central and eastern of the Qaidam Basin to reconstruct the crustal shortening deformation history during the Cenozoic collision. The results show that the Qaidam Basin began to shorten deformation nearly synchronous to the early collision, manifesting as a weak compression, the deformation increased significantly during the Middle and Late Eocene, and then weakened slightly and began to accelerate rapidly since the Late Miocene, especially since the Quaternary, reflecting this powerful compressional deformation and rapid uplift of the northern Tibetan Plateau around the Qaidam Basin. [source] Geological overview and cratering model for the Haughton impact structure, Devon Island, Canadian High ArcticMETEORITICS & PLANETARY SCIENCE, Issue 12 2005Gordon R. Osinski Regional geological mapping has refined the sedimentary target stratigraphy and constrained the thickness of the sedimentary sequence at the time of impact to ,1880 m. New 40Ar,39Ar dates place the impact event at ,39 Ma, in the late Eocene. Haughton has an apparent crater diameter of ,23 km, with an estimated rim (final crater) diameter of ,16 km. The structure lacks a central topographic peak or peak ring, which is unusual for craters of this size. Geological mapping and sampling reveals that a series of different impactites are present at Haughton. The volumetrically dominant crater-fill impact melt breccias contain a calcite-anhydrite-silicate glass groundmass, all of which have been shown to represent impact-generated melt phases. These impactites are, therefore, stratigraphically and genetically equivalent to coherent impact melt rocks present in craters developed in crystalline targets. The crater-fill impactites provided a heat source that drove a post-impact hydrothermal system. During this time, Haughton would have represented a transient, warm, wet microbial oasis. A subsequent episode of erosion, during which time substantial amounts of impactites were removed, was followed by the deposition of intra-crater lacustrine sediments of the Haughton Formation during the Miocene. Present-day intra-crater lakes and ponds preserve a detailed paleoenvironmental record dating back to the last glaciation in the High Arctic. Modern modification of the landscape is dominated by seasonal regional glacial and niveal melting, and local periglacial processes. The impact processing of target materials improved the opportunities for colonization and has provided several present-day habitats suitable for microbial life that otherwise do not exist in the surrounding terrain. [source] Origin of a late Eocene to pre-Miocene buried crater and breccia lens at Fohn-1, North Bonaparte Basin, Timor Sea: A probable extraterrestrial connectionMETEORITICS & PLANETARY SCIENCE, Issue 2 2000John d. Gorter The crater displays the classic elements of impact structures, including a central uplift, ring syncline, and upraised rims. The presence in the breccia of redeposited Campanian and Maastrichtian microfossils suggests rebound of strata from levels deeper than 1250 m below the pre-Miocene unconformity. Morphometric modelling suggests an original crater at least 1400 m deep, which is consistent with the excavation of Cretaceous strata. Stratigraphic and palaeontological evidence suggests that the impact occurred between 36 and 24.6 Ma. The breccia contains a pseudotachylite component enriched in the inert Pt group elements (PGE) (Ir, Ru) by factors of 5,12 above the values of common sediments. The more mobile PGE (Os, Pt, Pd) show a wide scatter and terrestrial-type values. Opposite geochemical/stratigraphic trends pertain to different PGE species,the relatively inert Ir-Ru group shows an overall concentration at the base of the section, whereas the more mobile Os shows peaks at median levels of the section,suggesting upward diagenetic leaching. The near-chondritic PGE patterns at the base of the breccia pile are accompanied by near-chondritic Ni/Cr, Co/Cr, Ni/Ir, Ni/Pt, and Cu/Pd ratios. Departure from these values related to alteration at higher levels in the breccia pile is accompanied with high S levels (,1%). [source] New strepsirrhine primate from the late Eocene of Peninsular Thailand (Krabi Basin)AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2006Laurent Marivaux Abstract In this paper, we describe the newly discovered lower jaw of a primate from the late Eocene Krabi coal mine (Bang Mark pit) of Peninsular Thailand. We performed microtomographic examinations at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) to analyze different morphological aspects of the jaw and teeth. Although partially preserved, this fossil mandible reveals a set of distinctive dental traits (e.g., double-rooted P2 and molarized P4) that allow us to describe a new stepsirrhine adapiform: Muangthanhinius siami, new genus and species. This taxon is somewhat atypical among Paleogene adapiforms, and more specialized than the sivaladapid adapiforms (hoanghoniines) that existed in Asia in the same epoch. In fact, Muangthanhinius shows a degree of dental specialization approximating that of some modern strepsirrhine lemuriforms, although it lacks the highly specialized anterior dentition characterizing this living primate group (canine + incisors forming a very procumbent toothcomb). In contrast, Muangthanhinius exhibits a large canine deeply anchored within the dentary that probably protruded high above the toothrow. Finally, despite the development of a molarized P4 as in Miocene sivaladapid sivaladapines, Muangthanhinius differs in molar morphology from this group, and the position of this new taxon within the Adapiformes remains indeterminate. Clarification of its phylogenetic position will require more morphological evidence than is currently available. Am J Phys Anthropol, 2006. © 2006 Wiley-Liss, Inc. [source] Geological and Geochemical Characteristics of the Hydrothermal Clay Alteration in South KoreaRESOURCE GEOLOGY, Issue 4 2000Sang-Mo KOH Abstract: Hydrothermally altered areas forming pyrophyllite-kaolin-sericite-alunite deposits are distributed in Chonnam and Kyongsang areas, Cretaceous volcanic field of the Yuchon Group. The Chonnam alteration area is located within depression zone which is composed of volcanic and granitic rocks of late Cretaceous age. The clay deposits of this area show the genetic relationship with silicic lava domes. The Kyongsang alteration area is mainly distributed within Kyongsang Basin comprising volcanic, sedimentary and granitic rocks of Cretaceous and Tertiary age. Most of the clay deposits of this area are closely related to cauldrons. Paleozoic clay deposit occurs in the contact zone between Precambrian Hongjesa granite gneiss and Paleozoic Jangsan quartzite of Choson Supergroup. Cretaceous igneous rocks of the both alteration areas belong to high K calc-alkaline series formed in the volcanic arc of continental margin by subduction-related magmatism. Chonnam igneous rocks show more enrichment of crustal components such as K, La, Ce, Sm, Nd and Ba, higher (La/Yb)cn ratio, and higher initial 87Sr/86Sr ratio (0. 708 to 0. 712) than those of Kyongsang igneous rocks. This might be due to the difference of degree of crustal contamination during Cretaceous magmatism. The most characteristic alteration minerals of Chonnam clay deposits are alunite, kaolin, quartz, pyrophyllite and diaspore which were formed by acidic solution. Those of Kyongsang clay deposits are sericite, quartz and pyrophyllite which were formed by weak acid and neutral solution. The formation ages of the clay deposits of two alteration areas range from 70. 1 to 81. 4 Ma and 39. 7 to 79. 4 Ma, respectively. The Daehyun clay deposit in Ponghwa area of Kyongsang province shows the alteration age range from 290 to 336 Ma. This result shows the different alteration episode from the hydrothermal alteration of Cretaceous to early Tertiary in the Kyongsang and Chonnam alteration areas. These data indicate, at least, three hydrothermal activities of Tertiary (middle to late Eocene), late Cretaceous (Santonian to Maastrichtian) and Paleozoic Carboniferous Periods in South Korea. [source] Insights in the exhumation history of the NW Zagros from bedrock and detrital apatite fission-track analysis: evidence for a long-lived orogenyBASIN RESEARCH, Issue 5 2010Stéphane Homke ABSTRACT We present the first fission-track (FT) thermochronology results for the NW Zagros Belt (SW Iran) in order to identify denudation episodes that occurred during the protracted Zagros orogeny. Samples were collected from the two main detrital successions of the NW Zagros foreland basin: the Palaeocene,early Eocene Amiran,Kashkan succession and the Miocene Agha Jari and Bakhtyari Formations. In situ bedrock samples were furthermore collected in the Sanandaj-Sirjan Zone. Only apatite fission-track (AFT) data have been successfully obtained, including 26 ages and 11 track-length distributions. Five families of AFT ages have been documented from analyses of in situ bedrock and detrital samples: pre-middle Jurassic at ,171 and ,225 Ma, early,late Cretaceous at ,91 Ma, Maastrichtian at ,66 Ma, middle,late Eocene at ,38 Ma and Oligocene,early Miocene at ,22 Ma. The most widespread middle,late Eocene cooling phase, around ,38 Ma, is documented by a predominant grain-age population in Agha Jari sediments and by cooling ages of a granitic boulder sample. AFT ages document at least three cooling/denudation periods linked to major geodynamic events related to the Zagros orogeny, during the late Cretaceous oceanic obduction event, during the middle and late Eocene and during the early Miocene. Both late Cretaceous and early Miocene orogenic processes produced bending of the Arabian plate and concomitant foreland deposition. Between the two major flexural foreland episodes, the middle,late Eocene phase mostly produced a long-lasting slow- or nondepositional episode in the inner part of the foreland basin, whereas deposition and tectonics migrated to the NE along the Sanandaj-Sirjan domain and its Gaveh Rud fore-arc basin. As evidenced in this study, the Zagros orogeny was long-lived and multi-episodic, implying that the timing of accretion of the different tectonic domains that form the Zagros Mountains requires cautious interpretation. [source] Propagation of orographic barriers along an active range front: insights from sandstone petrography and detrital apatite fission-track thermochronology in the intramontane Angastaco basin, NW ArgentinaBASIN RESEARCH, Issue 1 2006Isabelle Coutand ABSTRACT The arid Puna plateau of the southern Central Andes is characterized by Cenozoic distributed shortening forming intramontane basins that are disconnected from the humid foreland because of the defeat of orogen-traversing channels. Thick Tertiary and Quaternary sedimentary fills in Puna basins have reduced topographic contrasts between the compressional basins and ranges, leading to a typical low-relief plateau morphology. Structurally identical basins that are still externally drained straddle the eastern border of the Puna and document the eastward propagation of orographic barriers and ensuing aridification. One of them, the Angastaco basin, is transitional between the highly compartmentalized Puna highlands and the undeformed Andean foreland. Sandstone petrography, structural and stratigraphic analysis, combined with detrital apatite fission-track thermochronology from a ,6200-m-thick Miocene to Pliocene stratigraphic section in the Angastaco basin, document the late Eocene to late Pliocene exhumation history of source regions along the eastern border of the Puna (Eastern Cordillera (EC)) as well as the construction of orographic barriers along the southeastern flank of the Central Andes. Onset of exhumation of a source in the EC in late Eocene time as well as a rapid exhumation of the Sierra de Luracatao (in the EC) at about 20 Ma are recorded in the detrital sediments of the Angastaco basin. Sediment accumulation in the basin began ,15 Ma, a time at which the EC had already built sufficient topography to prevent Puna sourced detritus from reaching the basin. After ,13 Ma, shortening shifted eastward, exhuming ranges that preserve an apatite fission-track partial annealing zone recording cooling during the late Cretaceous rifting event. Facies changes and fossil content suggest that after 9 Ma, the EC constituted an effective orographic barrier that prevented moisture penetration into the plateau. Between 3.4 and 2.4 Ma, another orographic barrier was uplifted to the east, leading to further aridification and pronounced precipitation gradients along the mountain front. This study emphasizes the important role of tectonics in the evolution of climate in this part of the Andes. [source] Phylogeny, biogeography and classification of the snake superfamily Elapoidea: a rapid radiation in the late EoceneCLADISTICS, Issue 1 2009Christopher M. R. Kelly The snake superfamily Elapoidea presents one of the most intransigent problems in systematics of the Caenophidia. Its monophyly is undisputed and several cohesive constituent lineages have been identified (including the diverse and clinically important family Elapidae), but its basal phylogenetic structure is obscure. We investigate phylogenetic relationships and spatial and temporal history of the Elapoidea using 94 caenophidian species and approximately 2300,4300 bases of DNA sequence from one nuclear and four mitochondrial genes. Phylogenetic reconstruction was conducted in a parametric framework using complex models of sequence evolution. We employed Bayesian relaxed clocks and Penalized Likelihood with rate smoothing to date the phylogeny, in conjunction with seven fossil calibration constraints. Elapoid biogeography was investigated using maximum likelihood and maximum parsimony methods. Resolution was poor for early relationships in the Elapoidea and in Elapidae and our results imply rapid basal diversification in both clades, in the late Eocene of Africa (Elapoidea) and the mid-Oligocene of the Oriental region (Elapidae). We identify the major elapoid and elapid lineages, present a phylogenetic classification system for the superfamily (excluding Elapidae), and combine our phylogenetic, temporal and biogeographic results to provide an account of elapoid evolution in light of current palaeontological data and palaeogeographic models. © The Willi Hennig Society 2009. [source] |