Largest Scale (largest + scale)

Distribution by Scientific Domains


Selected Abstracts


Contemporary landscape burning patterns in the far North Kimberley region of north-west Australia: human influences and environmental determinants

JOURNAL OF BIOGEOGRAPHY, Issue 8 2004
T. Vigilante
Abstract Aim, This study of contemporary landscape burning patterns in the North Kimberley aims to determine the relative influences of environmental factors and compare the management regimes occurring on Aboriginal lands, pastoral leases, national park and crown land. Location, The study area is defined at the largest scale by Landsat Scene 108,70 that covers a total land area of 23,134 km2 in the North Kimberley Bioregion of north-west Australia, including the settlement of Kalumburu, coastline between Vansittart Bay in the west and the mouth of the Berkeley River in the east, and stretching approximately 200 km inland. Methods, Two approaches are applied. First, a 10-year fire history (1990,1999) derived from previous study of satellite (Landsat-MSS) remote sensing imagery is analysed for broad regional patterns. And secondly, a 2-year ground-based survey of burning along major access roads leading to an Aboriginal community is used to show fine-scale burning patterns. anova and multiple regression analyses are used to determine the influence of year, season, geology, tenure, distance from road and distance from settlement on fire patterns. Results, Satellite data indicated that an average of 30.8% (±4.4% SEM) of the study area was burnt each year with considerable variability between years. Approximately 56% of the study area was burnt on three or more occasions over the 10-year period. A slightly higher proportion of burning occurred on average in the late dry season (17.2 ± 3.6%), compared with the early dry season (13.6 ± 3.3%). The highest fire frequency occurred on basalt substrates, on pastoral tenures, and at distances 5,25 km from roads. Three-way anova demonstrated that geological substrate and land use were the most significant factors influencing fire history, however a range of smaller interactions were also significant. Analysis of road transects, originating from an Aboriginal settlement, showed that the timing of fire and geology type were the most significant factors affecting the pattern of area burnt. Of the total transect area, 28.3 ± 2.9% was burnt annually with peaks in burning occurring into the dry season months of June, August and September. Basalt uplands (81.2%) and lowlands (30.1%) had greater areas burnt than sandstone (12.3%) and sands (17.7%). Main conclusions, Anthropogenic firing is constrained by two major environmental determinants; climate and substrate. Seasonal peaks in burning activity in both the early and late dry season relate to periods of optimal fire-weather conditions. Substrate factors (geology, soils and physiognomy) influence vegetation-fuel characteristics and the movement of fire in the landscape. Basalt hills overwhelmingly supported the most frequent wildfire regime in the study region because of their undulating topography and relatively fertile soils that support perennial grasslands. Within these spatial and temporal constraints people significantly influenced the frequency and extent of fire in the North Kimberley thus tenure type and associated land uses had a significant influence on fire patterning. Burning activity is high on pastoral lands and along roads and tracks on some tenure types. While the state government uses aerial control burning and legislation to try to restrict burning to the early dry season across all geology types, in practice burning is being conducted across the full duration of the dry season with early dry season burning focused on sandstone and sand substrates and late dry season burning focused on basalt substrates. There is greater seasonal and spatial variation in burning patterns on landscapes managed by Aboriginal people. [source]


Multi-scale responses of plant species diversity in semi-natural buffer strips to agricultural landscapes

APPLIED VEGETATION SCIENCE, Issue 2 2008
Maohua Ma
Question: How does agricultural land usage affect plant species diversity in semi-natural buffer strips at multiple scales? Location: Lepsämä River watershed, Nurmijärvi, Southern Finland. Methods: Species diversity indicators included both richness and evenness. Plant communities in buffer strips were surveyed in 29 sampling sites. Using ArcGIS Desktop 9.0 (ArcInfo) and Fragstats 3.3 for GIS analysis, the landscape composition around each sampling site was characterized by seven parameters in square sectors at five scales: 4, 36, 100, 196, and 324ha. For each scale, Principle Component Analysis was used to examine the importance of each structural metric to diversity indicators using multiple regression and other simple analyses. Results: For all but the smallest scales (4 ha), two structural metrics including the diversity of land cover types and percentage of arable land were positively and negatively correlated with species richness, respectively. Both metrics had the highest correlation coefficients for species richness at the second largest scale (196 ha). The density of arable field edges between the fields was the only metric that correlated with species evenness for all scales, which had highest predictive power at the second smallest scale (36 ha). Conclusions: Species richness and evenness of buffer strips had scale-dependent relationships to land use in agricultural ecosystems. The results of this study indicated that species richness depends on the pattern of arable land use at large scales, which may relate to the regional species pool. Meanwhile, species evenness depended on the level of field edge density at small scales, which relates to how the nearby farmland was divided by the edges (e.g. many small-scale fields with high edge density or a few big-scale fields with low edge density). This implies that it is important to manage the biodiversity of buffer strips within a landscape context at multiple scales. [source]


Spatial and temporal scaling in habitat utilization by klipspringers (Oreotragus oreotragus) determined using giving-up densities

AUSTRAL ECOLOGY, Issue 5 2009
DAVE J. DRUCE
Abstract An animal's pattern of habitat use can reveal how different parts of its environment vary in quality based on the costs (such as predation risk) and benefits (such as food intake) of using each habitat. We studied klipspringer habitat use in Augrabies Falls National Park, South Africa using giving-up densities (GUDs; the amount of food remaining in a resource patch following exploitation) in experimental food patches. We tested hypotheses related to how salient habitat variables might influence klipspringers' perceptions of foraging costs. At small spatial scales (3,4 m), klipspringer GUDs did not vary with cover and open microhabitats, or with the four cardinal aspects (shading) around shrubs. Adding water adjacent to food patches did not influence GUDs, showing that water is not a limiting complementary resource to food. Generally, klipspringers do not appear to be physiologically constrained. There was no difference in GUDs between four daily time periods, or between summer and winter; however, a significant interaction effect of time-of-day with season resulted from GUDs during the midday time period in winter being significantly higher (perceived value lower) than during the same time period in summer. At moderate spatial scales (10,60 m), klipspringer GUDs increased with distance from rocks because of increased predation risk. Based on GUDs collected at the largest scale (two 4.41-ha grids), klipspringers preferred foraging at greater distances from drainage lines and on pebble and cobble substrates. Overall, this study has shown the efficacy of measuring GUDs to determine klipspringers' habitat utilization while foraging. [source]


Distribution and dispersal of desert mistletoe is scale-dependent, hierarchically nested

ECOGRAPHY, Issue 2 2004
Juliann Eve Aukema
Spatial patterns are important to many ecological processes, and scale is a critical component of both patterns and processes. I examined the pattern and scale of the spatial distribution of infection of host plants by the desert mistletoe, Phoradendron californicum, in a landscape that spans several square kilometers. I also studied the relationship between mistletoe infection and seed dispersal. I found elevated seed rain in areas with a high prevalence of mistletoes and I found that a greater proportion of trees receive seeds than are infected, suggesting that mistletoes will be aggregated in space. Using nested analysis of variance and variograms, I found that mistletoe infections were distributed in hierarchical patches. Mistletoes were aggregated within trees and mistletoe prevalence was correlated at scales of <1500 m, and at scales >4000 m. Patterns at the largest scales were correlated with elevation: sites at higher elevations showed reduced mistletoe infection compared to those at lower elevations. I propose that at small scales, mistletoe distributions are primarily the result of aggregation of seed-dispersing birds, and that the elevational effect could reflect the recent colonization of higher elevations by the mistletoes' mesquite hosts or the limits of the mistletoes' physiological tolerance to freezing-induced cavitation. [source]


Cosmic flows on 100 h,1 Mpc scales: standardized minimum variance bulk flow, shear and octupole moments

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010
Hume A. Feldman
ABSTRACT The low-order moments, such as the bulk flow and shear, of the large-scale peculiar velocity field are sensitive probes of the matter density fluctuations on very large scales. In practice, however, peculiar velocity surveys are usually sparse and noisy, which can lead to the aliasing of small-scale power into what is meant to be a probe of the largest scales. Previously, we developed an optimal ,minimum variance' (MV) weighting scheme, designed to overcome this problem by minimizing the difference between the measured bulk flow (BF) and that which would be measured by an ideal survey. Here we extend this MV analysis to include the shear and octupole moments, which are designed to have almost no correlations between them so that they are virtually orthogonal. We apply this MV analysis to a compilation of all major peculiar velocity surveys, consisting of 4536 measurements. Our estimate of the BF on scales of ,100 h,1 Mpc has a magnitude of |v| = 416 ± 78 km s ,1 towards Galactic l= 282°± 11° and b= 6°± 6°. This result is in disagreement with , cold dark matter with Wilkinson Microwave Anisotropy Probe 5 (WMAP5) cosmological parameters at a high confidence level, but is in good agreement with our previous MV result without an orthogonality constraint, showing that the shear and octupole moments did not contaminate the previous BF measurement. The shear and octupole moments are consistent with WMAP5 power spectrum, although the measurement noise is larger for these moments than for the BF. The relatively low shear moments suggest that the sources responsible for the BF are at large distances. [source]


The circles-in-the-sky signature for three spherical universes

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2006
R. Aurich
ABSTRACT The mysteriously low cosmic microwave background (CMB) power on the largest scales might point to a Universe which consists of a multi-connected space. In addition to a suppression of large-scale power, a multi-connected space can be revealed by its circles-in-the-sky signature. In this paper, a detailed search for this signature is carried out for those three homogeneous multi-connected spherical space forms that lead to the smallest large-scale power. A simultaneous search for all occurring paired circles is made using filtered CMB sky maps which enhance the ordinary Sachs,Wolfe contribution. A marginal hint is found for the right-handed Poincaré dodecahedron at ,tot, 1.015 and for the right-handed binary tetrahedral space at ,tot, 1.068. However, due to the complicated noise and foreground structure of the available microwave sky maps, we cannot draw firm conclusions from our findings. [source]