Largest Member (largest + member)

Distribution by Scientific Domains


Selected Abstracts


Novel interactors and a role for supervillin in early cytokinesis,

CYTOSKELETON, Issue 6 2010
Tara C. Smith
Abstract Supervillin, the largest member of the villin/gelsolin/flightless family, is a peripheral membrane protein that regulates each step of cell motility, including cell spreading. Most known interactors bind within its amino (N)-terminus. We show here that the supervillin carboxy (C)-terminus can be modeled as supervillin-specific loops extending from gelsolin-like repeats plus a villin-like headpiece. We have identified 27 new candidate interactors from yeast two-hybrid screens. The interacting sequences from 12 of these proteins (BUB1, EPLIN/LIMA1, FLNA, HAX1, KIF14, KIFC3, MIF4GD/SLIP1, ODF2/Cenexin, RHAMM, STARD9/KIF16A, Tks5/SH3PXD2A, TNFAIP1) co-localize with and mis-localize EGFP-supervillin in mammalian cells, suggesting associations in vivo. Supervillin-interacting sequences within BUB1, FLNA, HAX1, and MIF4GD also mimic supervillin over-expression by inhibiting cell spreading. Most new interactors have known roles in supervillin-associated processes, e.g. cell motility, membrane trafficking, ERK signaling, and matrix invasion; three (KIF14, KIFC3, STARD9/KIF16A) have kinesin motor domains; and five (EPLIN, KIF14, BUB1, ODF2/cenexin, RHAMM) are important for cell division. GST fusions of the supervillin G2-G3 or G4-G6 repeats co-sediment KIF14 and EPLIN, respectively, consistent with a direct association. Supervillin depletion leads to increased numbers of bi- and multi-nucleated cells. Cytokinesis failure occurs predominately during early cytokinesis. Supervillin localizes with endogenous myosin II and EPLIN in the cleavage furrow, and overlaps with the oncogenic kinesin, KIF14, at the midbody. We conclude that supervillin, like its interactors, is important for efficient cytokinesis. Our results also suggest that supervillin and its interaction partners coordinate actin and microtubule motor functions throughout the cell cycle. © 2010 Wiley-Liss, Inc. [source]


EMPIRICAL EVIDENCE FOR AN OPTIMAL BODY SIZE IN SNAKES

EVOLUTION, Issue 2 2003
Scott M. Boback
Abstract The concept of optimal size has been invoked to explain patterns in body size of terrestrial mammals. However, the generality of this phenomenon has not been tested with similarly complete data from other taxonomic groups. In this study we describe three statistical patterns of body size in snakes, all of which indicate an optimal length of 1.0 m. First, a distribution of largest body lengths of 618 snake species had a single mode at 1.0 m. Second, we found a positive relationship between the size of the largest member of an island snake assemblage and island area and a negative relationship between the size of the smallest member of an island snake assemblage and island area. Best-fit lines through these data cross at a point corresponding to 1.0 m in body length, the presumed optimal size for a one-species island. Third, mainland snake species smaller than 1.0 m become larger on islands whereas those larger than 1.0 m become smaller on islands. The observation that all three analyses converge on a common body size is concordant with patterns observed in mammals and partial analyses of four other disparate animal clades. Because snakes differ so strikingly from mammals (ectotherms, gape-limited predators, elongate body shape) the concordant patterns of these two groups provide strong evidence for the evolution of an optimal body size within independent monophyletic groups. However, snakes differ from other taxonomic groups that have been studied in exhibiting a body size distribution that is not obviously skewed in either direction. We suggest that idiosyncratic features of the natural history of ectotherms allow relatively unconstrained distributions of body size whereas physiological limitations of endotherms constrain distributions of body size to a right skew. [source]


GRATELOUPIA DORYPHORA HAS ESTABLISHED RESIDENCY IN RHODE ISLAND WATERS

JOURNAL OF PHYCOLOGY, Issue 2000
M. M. Harlin
Since 1994, when Grateloupia doryphora (Halymeniaceae, Rhodophyta) was first detected in Rhode Island, the species has spread to the northern portions of Narragansett Bay and onto the open coast of Rhode Island Sound. Specimens collected at 5 m depths off North Prudence Island reached 175 cm in length and establish this alga as the largest member of the Florideophyceae on North Atlantic shores. Percent cover of populations is seasonal: highest in fall (September through November) and lowest in spring (March through May). Monthly measurements at three stations in Narragansett Bay show significant seasonal differences (p < 0.01) over two annual cycles. Artificial substrata placed in the field at known periods allowed measurements of growth rates on individual thalli. Laboratory culture clarified the sequence of life history stages that make this species a successful contender for space. [source]


Microsatellites for the Tasmanian devil (Sarcophilus laniarius)

MOLECULAR ECOLOGY RESOURCES, Issue 2 2003
Menna E. Jones
Abstract The Tasmanian devil (Sarcophilus laniarius), a medium-sized predator/scavenger, is the largest member of the short-lived carnivorous marsupial Family Dasyuridae. Now restricted to Tasmania, populations are impacted by habitat clearance and anthropogenic mortality and genetic studies could be of value in informing levels of genetic diversity, mating system, dispersal and the effects of natural and anthropogenic landscape features on gene flow. Microsatellite markers were isolated from a partial, size-selected genomic library that was enriched for microsatellite sequences. Primer pairs were developed for 11 polymorphic dinucleotide microsatellite loci that conform with Hardy,Weinberg equilibrium and reveal moderate genetic variability across the species range. [source]


Temporal and spatial expression profiles of the Fat3 protein, a giant cadherin molecule, during mouse development

DEVELOPMENTAL DYNAMICS, Issue 2 2007
Shigenori Nagae
Abstract Cadherins constitute a superfamily of cell,cell interaction molecules that participate in morphogenetic processes of animal development. Fat cadherins are the largest members of this superfamily, with 34 extracellular cadherin repeats. Classic Fat, identified in Drosophila, is known to regulate cell proliferation and planar cell polarity. Although 4 subtypes of Fat cadherin, Fat1, Fat2, Fat3, and Fat4/Fat-J, have been identified in vertebrates, their protein localization remains largely unknown. Here we describe the mRNA and protein distributions of Fat3 during mouse development. We found that Fat3 expression was restricted to the nervous system. In the brain, Fat3 was expressed in a variety of regions and axon fascicles. However, its strongest expression was observed in the olfactory bulb and retina. Detailed analysis of Fat3 in the developing olfactory bulb revealed that Fat3 mRNA was mainly expressed by mitral cells and that its proteins were densely localized along the dendrites of these cells as well as in their axons to some extent. Fat3 transcripts in the retina were expressed by amacrine and ganglion cells, and its proteins were concentrated in the inner plexiform layer throughout development. Based on these observations, we suggest that Fat3 plays a role in the interactions between neurites derived from specific subsets of neurons during development. Developmental Dynamics 236:534,543, 2007. © 2006 Wiley-Liss, Inc. [source]


Solution and Thin-Film Aggregation Studies of Octasubstituted Dendritic Phthalocyanines

ISRAEL JOURNAL OF CHEMISTRY, Issue 1 2009
Casey A. Kernag
The synthesis and solution and thin-film characterization of eight octasubstituted dendritic phthalocyanines (Pcs) and their zinc complexes are reported. The Pc chromophore was substituted in the 2,3,9,10,16,17,23,24-positions with three generations of benzylaryl ether dendrons with either a benzyl (3a-3c) or 3,5-di- t -butylbenzyl periphery (3d-3f). Visible spectra in solution (CH2Cl2 -EtOH mixtures, toluene, THF, dioxane, acetone, and EtOAc) indicated a varying degree of chromophore aggregation that depended on solvent, dendrimer generation, and whether the Pc was metallated. Variable-concentration visible spectroscopic studies were analyzed using a nonlinear least-squares fitting procedure giving Kd values. These values further quantitated the observations that the t -butyl-substituted den-drimers 3d-3f were all less prone to aggregation in solution than the unsubstituted dendrimers 3a-3c, with a monotonic decrease in Kd across the series 3a , 3b , 3c , 3d , 3e , 3f. Second-generation t -butyl-substituted dendrimer 3f showed little to no aggregation in all solvents studied. Thin-film studies indicated that the largest members of the two dendrimer groups, third-generation 3c and second-generation 3f, were largely monomeric as evidenced by split Q-bands, similar to that seen in dilute CH2Cl2 solution when deposited via spin-coating onto glass slides. The metallated zinc Pcs 4a-4f all exhibited significantly less tendency toward aggregation in both solution and thin-films than their unmetallated analogues. [source]