Larger Surface Area (larger + surface_area)

Distribution by Scientific Domains


Selected Abstracts


The Effect of Surface Area and Crystal Structure on the Catalytic Efficiency of Iron(III) Oxide Nanoparticles in Hydrogen Peroxide Decomposition

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 16 2010
Cenek Gregor
Abstract Iron(II) oxalate dihydrate has been used as a readily decomposable substance for the controlled synthesis of nanosized iron(III) oxides. The polymorphous composition, particle size and surface area of these iron oxide nanoparticles were controlled by varying the reaction temperature between 185 and 500 °C. As-prepared samples were characterized by XRD, low-temperature and in-field Mössbauer spectroscopy, BET surface area and the TEM technique. They were also tested as heterogeneous catalysts in hydrogen peroxide decomposition. At the selected temperatures, the formed nanomaterials did not contain any traces of amorphous phase, which is known to considerably reduce the catalytic efficiency of iron(III) oxide catalysts. As the thickness of the sample (, 2 mm) was above the critical value, a temporary temperature increase ("exo effect") was observed during all quasi-isothermal decompositions studied, irrespective of the reaction temperature. Increasing the reaction temperature resulted in a shift of the exo effect towards shorter times and an increased content of maghemite phase. The maghemite content decreases above 350 °C as a result of a thermally induced polymorphous transition into hematite. The catalytic data demonstrate that the crystal structure of iron(III) oxide (i.e. the relative contents of maghemite and hematite) does not influence the rate of hydrogen peroxide decomposition. However, the rate constant increases monotonously with increasing sample surface area (and decreasing thermolysis temperature), reaching a maximum of 27,×,10,3 min,1(g/L),1 for the sample with a surface area of 285 m2,g,1. This rate constant is currently the highest reported value of all known iron oxide catalytic systems and is even slightly higher than that observed for the most efficient catalyst reported to date, which has a significantly larger surface area of 337 m2,g,1. This surprisingly high catalytic activity at relatively low surface area can be ascribed to the absence of a amorphous phase in the samples prepared in this study. Taking into account these new findings, the contributions of the key factors highlighted above (surface area, particle size, crystal structure, crystallinity) to the overall activity of iron oxides forhydrogen peroxide decomposition are discussed. [source]


Syntheses, Li Insertion, and Photoactivity of Mesoporous Crystalline TiO2

ADVANCED FUNCTIONAL MATERIALS, Issue 17 2009
Wenbo Yue
Abstract Ordered mesoporous rutile and anatase TiO2 samples are prepared using mesoporous silica SBA-15 as template and freshly synthesized titanium nitrate and titanium chloride solutions as precursors. The rutile material formed from the nitrate solution is monocrystalline and contains minimal amounts of Si with a Si:Ti ratio of 0.031(4), whereas the anatase material formed from the chloride solution comprises nanocrystals and contains a higher content of Si with a Si:Ti ratio of 0.18(3). It is found that control of temperature and selection of Ti-containing precursor play important roles in determining the crystal phase and crystallinity. A possible formation mechanism of porous crystalline TiO2 is suggested. Characterization of these porous materials is performed by XRD, HRTEM, and nitrogen adsorption/desorption. SBA-15-templated mesoporous rutile TiO2 exhibits a higher Li ion insertion capability than KIT-6-templated TiO2 due to its larger surface area. Likewise mesoporous anatase TiO2:SiO2 composite has a better photoactivity than bulk TiO2 or TiO2 -loaded SBA-15 for bleaching methylene blue. [source]


Hydrodenitrification with PdCu Catalysts: Catalyst Optimization by Experimental and Quantum Chemical Approaches

ISRAEL JOURNAL OF CHEMISTRY, Issue 1 2006
Irena Efremenko
A continuous process for nitrate and nitrite abatement from drinking water by catalytic hydrogenation has been developed in our lab. We describe the experimental process development procedure, and support it with semiempirical quantum chemical methods. Comparisons of activated carbon (ACC) and silica glass fiber (GFC) cloths as supports for mono- and bimetallic Pd-Cu catalysts show the former to be 45-fold and 15-fold more active for nitrite and nitrate hydrogenation, respectively, than the latter. Catalysts prepared by selective deposition of Cu on Pd/ACC led to better activity for nitrate hydrogenation than catalysts prepared by co-impregnation or ion exchange methods. The optimal Cu:Pd atomic ratio was found to be 1:2. The computational results show the following: (i) The dispersion of Pd catalysts supported on ACC is much higher than that on GFC due to the larger surface area and higher density of adsorption sites, and that accounts for the higher activity of PdCu/ACC; (ii) Nanosized Pd particles supported on ACC have a semispherical shape and possess preferentially close-packed triangular surfaces, while Pd/GFC particles are extended in the direction parallel to the support surface and show both fcc (100) and (111) planes; (iii) The interaction of Cu atoms with both supports is stronger than that of Pd; adsorbed Cu atoms show a greater ability to form monometallic than bimetallic bonds and that should result in poor mixing of the metal upon co-impregnation, as was observed experimentally; (iv) Cu atoms in bimetallic PdCu particles admit a significant positive charge; the experimentally measured solubility of metal atoms correlates with their calculated charges. The best catalyst (2 wt%Pd-0.6 wt%Cu/ACC) was employed in a novel continuous flow reactor for nitrate hydrogenation in distilled and tap water. The advantages of the reactor investigated over a conventional packed bed reactor are discussed, suggesting a potential for further process intensification. [source]


Dimethylsilylbis(1-indenyl) zirconium dichloride/methylaluminoxane catalyst supported on nanosized silica for propylene polymerization

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2008
Kuo-Tseng Li
Abstract A dimethylsilylene-bridged metallocene complex, (CH3)2Si(Ind)2ZrCl2, was supported on a nanosized silica particle, whose surface area was mostly external. The resulting catalyst was used to catalyze the polymerization of propylene to polypropylene. Under identical reaction conditions, a nanosized catalyst exhibited much better polymerization activity than a microsized catalyst. At the optimum polymerization temperature of 55°C, the former had 80% higher activity than the latter. In addition, the nanosized catalyst produced a polymer with a greater molecular weight, a narrower molecular weight distribution, and a higher melting point in comparison with the microsized catalyst. The nanosized catalyst's superiority was ascribed to the higher monomer concentration at its external active sites (which were free from internal diffusion resistance) and was also attributed to its much larger surface area. Electron microscopy results showed that the nanosized catalyst produced polymer particles of similar sizes and shapes, indicating that each nanosized catalyst particle had uniform polymerization activity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Host selection by Anopheles arabiensis and An. quadriannulatus feeding on cattle in Zimbabwe

MEDICAL AND VETERINARY ENTOMOLOGY, Issue 2 2002
A. Prior
Abstract In the Zambezi valley, mosquito females of the Anopheles gambiae Giles complex (Diptera: Culicidae) were collected from a hut containing pairs of cattle distinguishable by known DNA markers. DNA was extracted from the blood-fed mosquito abdomens and primer sets for ungulate and mosquito DNA loci were used to identify the mosquito sibling species and individual host source(s) of their bloodmeals. The 67 mosquitoes comprised a mixture of An. arabiensis Patton (31%) and An. quadriannulatus Theobald (69%). DNA from one or both of the cattle present in the hut was detected in 91% of samples. When the hut contained an adult and a calf, the percentage of bloodmeals from the adult, the calf and adult + calf were 58%, 27% and 15%, respectively; the trend towards meals from the adult host was consistent but not always significant. When the pair of cattle comprised two adults of roughly equal size and age, then mosquitoes generally showed no significant bias towards feeding from one individual. There was no significant difference in the pattern of host selection made by An. arabiensis and An. quadriannulatus but the former had a significantly higher percentage (20%) of mixed meals than An. quadriannulatus (9%). These two members of the An. gambiae complex appear to be less selective in their choice of cattle hosts compared to day-active Diptera such as tsetse and Stomoxys, possibly because the hosts are generally asleep when Anopheles are active and there is therefore less selective pressure to adapt to host defensive behaviour. The slight bias of Anopheles towards older and/or larger cattle may be related to the host's larger surface area. [source]


Crops and genotypes differ in efficiency of potassium uptake and use

PHYSIOLOGIA PLANTARUM, Issue 4 2008
Zed Rengel
Cultivars with increased efficiency of uptake and utilization of soil nutrients are likely to have positive environmental effects through reduced usage of chemicals in agriculture. This review assesses the available literature on differential uptake and utilization efficiency of K in farming systems. Large areas of agricultural land in the world are deficient in K (e.g. 3/4 of paddy soils in China, 2/3 of the wheatbelt in Southern Australia), with export in agricultural produce (especially hay) and leaching (especially in sandy soils) contributing to lowering of K content in the soil. The capacity of a genotype to grow and yield well in soils low in available K is K efficiency. Genotypic differences in efficiency of K uptake and utilization have been reported for all major economically important plants. The K-efficient phenotype is a complex one comprising a mixture of uptake and utilization efficiency mechanisms. Differential exudation of organic compounds to facilitate release of non-exchangeable K is one of the mechanisms of differential K uptake efficiency. Genotypes efficient in K uptake may have a larger surface area of contact between roots and soil and increased uptake at the root,soil interface to maintain a larger diffusive gradient towards roots. Better translocation of K into different organs, greater capacity to maintain cytosolic K+ concentration within optimal ranges and increased capacity to substitute Na+ for K+ are the main mechanisms underlying K utilization efficiency. Further breeding for increased K efficiency will be dependent on identification of suitable markers and compounding of efficiency mechanisms into locally adapted germplasm. [source]


Effects of smoke, heat, darkness and cold stratification on seed germination of 40 species in a cool temperate zone in northern Japan

PLANT BIOLOGY, Issue 3 2009
S. Tsuyuzaki
Abstract The effects of smoke, heat, darkness and cold stratification on seed germination were examined for 40 species with various life history attributes. These species establish in early successional stages on a volcano and are distributed in cool temperate zones of northern Japan. Smoke decreased seed germination in 11 species and increased it in one species, Leucothoe grayana. Germination of Polygonum longisetum was enhanced by a combination of smoke and cold, and that of Aralia elata by smoke and heat. Heat increased germination for three species and decreased it for one. Cold stratification broke dormancy in seeds of 11 species. Continuous darkness decreased germination of 22 species and did not increase germination for any species, showing that approximately half of the species require light for maximum germination. Although most species are sun plants that establish in early stages of succession and/or in disturbed areas, smoke and heat do not enhance germination of these species after disturbance, even when the disturbance is fire. Germination of slender and/or large seeds tends to be decreased more by smoke, probably because of their larger surface area. Light is more important than smoke and heat for detection of disturbance and for seed germination in this region. However, despite the low fire frequency in the region, germination of a few species was increased by fire-derived stimuli. [source]


The interplay between speed, kinetics, and hand postures during primate terrestrial locomotion

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2010
Biren A. Patel
Abstract Nonprimate terrestrial mammals may use digitigrade postures to help moderate distal limb joint moments and metapodial stresses that may arise during high-speed locomotion with high-ground reaction forces (GRF). This study evaluates the relationships between speed, GRFs, and distal forelimb kinematics in order to evaluate if primates also adopt digitigrade hand postures during terrestrial locomotion for these same reasons. Three cercopithecine monkey species (Papio anubis, Macaca mulatta, Erythrocebus patas) were videotaped moving unrestrained along a horizontal runway instrumented with a force platform. Three-dimensional forelimb kinematics and GRFs were measured when the vertical force component reached its peak. Hand posture was measured as the angle between the metacarpal segment and the ground (MGA). As predicted, digitigrade hand postures (larger MGA) are associated with shorter GRF moment arms and lower wrist joint moments. Contrary to expectations, individuals used more palmigrade-like (i.e. less digitigrade) hand postures (smaller MGA) when the forelimb was subjected to higher forces (at faster speeds) resulting in potentially larger wrist joint moments. Accordingly, these primates may not use their ability to alter their hand postures to reduce rising joint moments at faster speeds. Digitigrady at slow speeds may improve the mechanical advantage of antigravity muscles crossing the wrist joint. At faster speeds, greater palmigrady is likely caused by joint collapse, but this posture may be suited to distribute higher GRFs over a larger surface area to lower stresses throughout the hand. Thus, a digitigrade hand posture is not a cursorial (i.e. high speed) adaptation in primates and differs from that of other mammals. Am J Phys Anthropol 2010. © 2009 Wiley-Liss, Inc. [source]


Near-atomic resolution analysis of BipD, a component of the type III secretion system of Burkholderia pseudomallei

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 9 2010
M. Pal
Burkholderia pseudomallei, the causative agent of melioidosis, possesses a type III protein secretion apparatus that is similar to those found in Salmonella and Shigella. A major function of these secretion systems is to inject virulence-associated proteins into target cells of the host organism. The bipD gene of B. pseudomallei encodes a secreted virulence factor that is similar in sequence and is most likely to be functionally analogous to IpaD from Shigella and SipD from Salmonella. Proteins in this family are thought to act as extracellular chaperones at the tip of the secretion needle to help the hydrophobic translocator proteins enter the target cell membrane, where they form a pore and may also link the translocon pore with the secretion needle. BipD has been crystallized in a monoclinic crystal form that diffracted X-rays to 1.5,Å resolution and the structure was refined to an R factor of 16.1% and an Rfree of 19.8% at this resolution. The putative dimer interface that was observed in previous crystal structures was retained and a larger surface area was buried in the new crystal form. [source]


Ultraviolet reflectance and cryptic sexual dichromatism in the ocellated lizard, Lacerta (Timon) lepida (Squamata: Lacertidae)

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009
ENRIQUE FONT
Ultraviolet (UV) colorations have garnered extensive theoretical and empirical treatment in recent years, although the majority of studies have concerned themselves with avian taxa. However, many lizards have acute visual systems with retinal photoreceptors that are sensitive to UV wavelengths, and also display UV-reflecting colour patches. In the present study, we used UV photography and full-spectrum reflectance spectrophotometry to describe intra- and intersexual colour variation in adult ocellated lizards Lacerta (Timon) lepida and to obtain evidence of UV-based ornamentation. We also investigated whether any colour traits correlate with morphological traits potentially related to individual quality. The results obtained show that the prominent eyespots and blue outer ventral scales (OVS) that ocellated lizards have on their flanks reflect strongly in the UV range and are best described as UV/blue in coloration. The eyespots of males are larger and cover a larger surface area than those of females. However, these differences can be entirely accounted for by sex differences in body size, with males being generally larger than females. We also found differences in the shape of reflectance curves from males and females, with the eyespots and blue OVS of males being more UV-shifted than those of females. Other body regions have extremely low UV reflectance and are not sexually dichromatic. Eyespot size and the total surface area covered by eyespots increases with body size in males but not in females, suggesting that they may be signalling an intrinsic individual characteristic such as body size or male fighting ability. We also discuss the alternative and non-exclusive hypothesis that eyespots may function in lizards of both sexes as protective markings against predators. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 766,780. [source]


Preparation and Characterization of Codeposited Palladium-Nickel/Titanium Electrodes and Palladium-Nickel/Polymeric Pyrrole Film/Titanium Electrodes

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 10 2008
X. Hu
Abstract Palladium-nickel/titanium (Pd-Ni/Ti) and palladium-nickel/polymeric pyrrole film/titanium (Pd-Ni/PPy/Ti) electrodes were prepared by electrochemical deposition. The electrochemical characteristics of the Pd-Ni/Ti and Pd-Ni/PPy/Ti electrodes were studied by means of cyclic voltammetry (CV) based on orthogonal experiments. CV studies on the electrodes were conducted in 0.5,mol/L sulfuric acid solution. Experimental results indicate that the hydrogen adsorption peak value of the Pd-Ni/PPy/Ti electrode seen at ca. ,500,mV is larger than that of Pd-Ni/Ti electrode. Scanning electron microscope (SEM) images indicate that polymeric pyrrole film, which formed on electrode can modify the electrode surface configuration significantly and provide the surface of the Pd-Ni/PPy/Ti electrode with more layers and a larger surface area. [source]


Role of Nanosized Zirconia on the Properties of Cu/Ga2O3/ZrO2 Catalysts for Methanol Synthesis

CHINESE JOURNAL OF CHEMISTRY, Issue 2 2006
Xin-Mei Liu
Abstract The introduction of mesoporous nanosize zirconia to the catalyst for methanol synthesis dedicates the nanosized catalyst and mesoporous duplicated properties. The catalyst bears the larger surface area, larger mesoporous volume and more uniform diameter, more surface metal atoms and oxygen vacancies than the catalyst prepared with the conventional coprecipitation method. The modification of microstructure and electronic effect could result in the change of the reduced chemical state and decrease of reducuction temperature of copper, donating the higher activity and methanol selectivity to the catalyst. The results of methanol synthesis demonstrate that the Cu+ is the optimum active site. Also, the interaction between the copper and zirconia shows the synergistic effect to fulfil the methanol synthesis. [source]


ZnO Nanostructures for Dye-Sensitized Solar Cells

ADVANCED MATERIALS, Issue 41 2009
Qifeng Zhang
Abstract This Review focuses on recent developments in the use of ZnO nanostructures for dye-sensitized solar cell (DSC) applications. It is shown that carefully designed and fabricated nanostructured ZnO films are advantageous for use as a DSC photoelectrode as they offer larger surface areas than bulk film material, direct electron pathways, or effective light-scattering centers, and, when combined with TiO2, produce a core,shell structure that reduces the combination rate. The limitations of ZnO-based DSCs are also discussed and several possible methods are proposed so as to expand the knowledge of ZnO to TiO2, motivating further improvement in the power-conversion efficiency of DSCs. [source]


Shear stress nucleation in microcellular foaming process

POLYMER ENGINEERING & SCIENCE, Issue 6 2002
Lee Chen
The effect of shear stress on the foaming process has been studied using the Foaming Process Simulator developed previously. The polymer samples were saturated with gas in the test chamber. A rotor was used to apply shear stress to the polymer samples. Foams were obtained by releasing the pressure quickly. Polystyrene, filled and unfilled, was used as the material. The cell density was analyzed with a scanning electron microscope. It was found that the cell density was significantly increased by introducing shear stress. The higher the shear stress, the more significant the effect. A cell stretch model has been developed to explain the cell nucleation enhancement with shear stress. The nucleation sites are stretched under the shear stress. The stretched nuclei are much easier to expand for cell formation owing to their larger surface areas and non-spherical shapes. The model prediction shows the same tendency of the effect of shear stress observed in the experiment. The key issue with shear stress nucleation is the transformation of mechanical shear energy into surface energy. [source]