Larger Size Classes (larger + size_class)

Distribution by Scientific Domains


Selected Abstracts


Functional response and size-dependent foraging on aquatic and terrestrial prey by brown trout (Salmo trutta L.)

ECOLOGY OF FRESHWATER FISH, Issue 2 2010
P. Gustafsson
Gustafsson P, Bergman E, Greenberg LA. Functional response and size-dependent foraging on aquatic and terrestrial prey by brown trout (Salmo trutta L.).Ecology of Freshwater Fish 2010: 19: 170,177. © 2010 John Wiley & Sons A/S Abstract ,, Terrestrial invertebrate subsidies are believed to be important energy sources for drift-feeding salmonids. Despite this, size-specific use of and efficiency in procuring this resource have not been studied to any great extent. Therefore, we measured the functional responses of three size classes of wild brown trout Salmo trutta (0+, 1+ and ,2+) when fed either benthic- (Gammarus sp.) or surface-drifting prey (Musca domestica) in laboratory experiments. To test for size-specific prey preferences, both benthic and surface prey were presented simultaneously by presenting the fish with a constant density of benthic prey and a variable density of surface prey. The results showed that the functional response of 0+ trout differed significantly from the larger size classes, with 0+ fish having the lowest capture rates. Capture rates did not differ significantly between prey types. In experiments when both prey items were presented simultaneously, capture rate differed significantly between size classes, with larger trout having higher capture rates than smaller trout. However, capture rates within each size class did not change with prey density or prey composition. The two-prey experiments also showed that 1+ trout ate significantly more surface-drifting prey than 0+ trout. In contrast, there was no difference between 0+ and ,2+ trout. Analyses of the vertical position of the fish in the water column corroborated size-specific foraging results: larger trout remained in the upper part of the water column between attacks on surface prey more often than smaller trout, which tended to seek refuge at the bottom between attacks. These size-specific differences in foraging and vertical position suggest that larger trout may be able to use surface-drifting prey to a greater extent than smaller conspecifics. [source]


Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale

GLOBAL CHANGE BIOLOGY, Issue 2 2010
MARTIN J. GENNER
Abstract Commercial fishing and climate change have influenced the composition of marine fish assemblages worldwide, but we require a better understanding of their relative influence on long-term changes in species abundance and body-size distributions. In this study, we investigated long-term (1911,2007) variability within a demersal fish assemblage in the western English Channel. The region has been subject to commercial fisheries throughout most of the past century, and has undergone interannual changes in sea temperature of over 2.0 °C. We focussed on a core 30 species that comprised 99% of total individuals sampled in the assemblage. Analyses showed that temporal trends in the abundance of smaller multispecies size classes followed thermal regime changes, but that there were persistent declines in abundance of larger size classes. Consistent with these results, larger-growing individual species had the greatest declines in body size, and the most constant declines in abundance, while abundance changes of smaller-growing species were more closely linked to preceding sea temperatures. Together these analyses are suggestive of dichotomous size-dependent responses of species to long-term climate change and commercial fishing over a century scale. Small species had rapid responses to the prevailing thermal environment, suggesting their life history traits predisposed populations to respond quickly to changing climates. Larger species declined in abundance and size, reflecting expectations from sustained size-selective overharvesting. These results demonstrate the importance of considering species traits when developing indicators of human and climatic impacts on marine fauna. [source]


Effects of turbidity on feeding of the young-of-the-year pikeperch (Sander lucioperca) in fishponds

AQUACULTURE RESEARCH, Issue 2 2010
Priit Zingel
Abstract The effect of water turbidity on the prey selection and consumption of the young-of-the-year (YOY) pikeperch in the planktivorous feeding stage was studied. Attention was paid particularly to the question of how the food selectivity depends on the size of YOY pikeperch and how the turbidity affects feeding in different size classes. Studies were carried out in ponds of two fish farms in Estonia over 4 years. Small cladocerans were the most preferred prey in the smallest pikeperch size class. In larger size classes, the most selected prey were the large cladocerans. Water turbidity affected the prey selection of the planktivorous pikeperch significantly. In more turbid environments, the larger zooplankters were more positively selected than the smaller ones. Turbidity decreased both total zooplankton consumption and Fulton's condition factor of fish only in the largest size class of pikeperch. The effect of turbidity on foraging and growth, and thus on the size of juvenile pikeperch of a particular year class is substantial under conditions where juveniles cannot shift from planktivory to piscivory. [source]


Giant Tortoises as Ecological Engineers: A Long-term Quasi-experiment in the Galápagos Islands

BIOTROPICA, Issue 2 2010
James P. Gibbs
ABSTRACT Giant tortoises were once a megafaunal element widespread in tropical and subtropical ecosystems. The role of giant tortoises as herbivores and seed dispersers, however, is poorly known. We evaluated tortoise impacts on Opuntia cactus (Cactaceae) in the Galápagos Islands, one of the last areas where giant tortoises remain extant, where the cactus is a keystone resource for many animals. We contrasted cactus populations immediately inside and outside natural habitats where tortoises had been held captive for several decades. Through browsing primarily and trampling secondarily tortoises strongly reduced densities of small (0.5,1.5 m high) cacti, especially near adult cacti, and thereby reduced densities of cacti in larger size classes. Tortoises also caused a shift from vegetative to sexual modes of reproduction in cacti. We conclude that giant tortoises promote a sparse and scattered distribution in Opuntia cactus and its associated biota in the Galápagos Islands. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp [source]


Resource Partitioning in Sympatric Cynopterus bats in Lowland Tropical Rain Forest, Thailand

BIOTROPICA, Issue 2 2007
Sara Bumrungsri
ABSTRACT Diet and habitat use of the closely related and size-overlapping sympatric Cynopterus brachyotis and C. sphinx were established in lowland dry evergreen forest, Thailand, between March 1998 and March 2000. Feces from netted bats were analyzed, and the recapture rate determined. Although both species share a set of food plants, and fruits from early successional forest contribute about half of their diet, C. brachyotis, the smaller of the two species, ate a significantly greater proportion of fruits from early successional forest than C. sphinx. The latter ate a significantly greater proportion of fruit species in larger size classes. More C. brachyotis were captured in early successional forest in almost every month, while C. sphinx is more common in old-growth forest. However, the capture rate of C. sphinx increased in early successional forest in the mid-dry season when its preferred fruits become available. The recapture rate of C. brachyotis in early successional forest was significantly higher than that of C. sphinx, and the reverse situation was observed in old-growth forest. Male C. sphinx had a significantly higher recapture rate in early successional forest than females. Fruit size and habitat use are the major determinants of resource partitioning between these size-overlapping congeners. [source]