Large Single Crystals (large + single_crystal)

Distribution by Scientific Domains


Selected Abstracts


Growth and Dielectric Characterization of Large Single Crystals of GaAsO4, a Novel Piezoelectric Material.

CHEMINFORM, Issue 32 2003
O. Cambon
Abstract For Abstract see ChemInform Abstract in Full Text. [source]


Crystal growth, crystal structure and physical properties of polar orthorhombic tris(glycine) zinc chloride

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 2 2008
M. Fleck
Abstract Large single crystals of the polar (point group mm 2) compound tris(glycine) zinc chloride, (NH3CH2COO)3 · ZnCl2, were grown from aqueous solutions. The refractive indices were measured in the wavelength region from 365 nm to 1083 nm and an unpolarised absorption spectrum was recorded (transparency range from 260 to 1550nm). The phase matching conditions for second harmonic generation were analysed: both, type I (ss-f) and type II (sf-f) are possible in the red and near IR region. All five components of the piezoelectric tensor [dijk ] were determined; the maximum values of longitudinal and transverse piezoelectric effects are less than one half of d111 of ,-quartz. In addition, a redetermination of the crystal structure (including location of H atoms) is presented. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Crystal growth and structural refinement of NaMn7O12

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 10-11 2005
E. Gilioli
Abstract We report the crystal growth and the structural refinement of NaMn7O12, a manganite having a double perovskite structure. As in many similar compounds, there is coexistence of Mn3+ and Mn4+ but in this material they orderly occupy different sites for crystallographic reasons. Therefore, this peculiar structure can be considered as a model system for studying complex mechanisms such as charge, orbital and spin ordering. High purity bulk samples and "large" single crystals are needed to study tiny modifications in the crystallographic and magnetic structures associated to the ordering phenomena. Almost single phase (more than 96% pure) and single crystals (up to about 150 µm) of NaMn7O12 were synthesized by solid state reaction under pressure in a multi-anvil apparatus. Single crystal x-ray diffraction and SEM analysis have been used to characterize the crystals. The structure refinement indicates that NaMn7O12 crystallizes in the cubic Im3 space group, with a = 7.312 Å and Z = 2. Further studies are in progress to optimize the synthesis conditions, in order to grow larger crystals. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Azeotropic Binary Solvent Mixtures for Preparation of Organic Single Crystals

ADVANCED FUNCTIONAL MATERIALS, Issue 22 2009
Xiaoran Li
Abstract Here, a new approach is introduced to prepare large single crystals of ,-conjugated organic molecules from solution. Utilizing the concept of azeotropism, single crystals of tri-isopropylsilylethynyl pentacene (TIPS-PEN) with dimensions up to millimeters are facilely self-assembled from homogeneous solutions comprising two solvents with opposing polarities and a positive azeotropic point. At solvent compositions close to the azeotropic point, an abrupt transition of morphology from polycrystalline thin-films to large single crystals is found. How to adjust the initial ratio of the binary solvents so that the change in solvent composition during evaporation favors the specific H-aggregation and promotes an efficient self-assembly of TIPS-PEN is explained. The charge-carrier (hole) mobilities are substantially enhanced by a factor of 4 from the morphology of thin-films to large single crystals used as active layer in field-effect transistors. Additionally, this approach is extended to other ,,, stacked organic molecules to elucidate its broad applicability. [source]


Probing the Anisotropic Field-Effect Mobility of Solution-Deposited Dicyclohexyl-,-quaterthiophene Single Crystals,

ADVANCED FUNCTIONAL MATERIALS, Issue 10 2007

Abstract Measuring the anisotropy of the field-effect mobility provides insight into the correlation between molecular packing and charge transport in organic semiconductor materials. Single-crystal field-effect transistors are ideal tools to study intrinsic charge transport because of their high crystalline order and chemical purity. The anisotropy of the field effect mobility in organic single crystals has previously been studied by lamination of macroscopically large single crystals onto device substrates. Here, a technique is presented that allows probing of the mobility anisotropy even though only small crystals are available. Crystals of a soluble oligothiophene derivative are grown in bromobenzene and drop-cast onto substrates containing arrays of bottom-contact gold electrodes. Mobility anisotropy curves are recorded by measuring numerous single crystal transistor devices. Surprisingly, two mobility maxima occur at azimuths corresponding to both axes of the rectangular cyclohexyl-substituted quaterthiophene (CH4T) in-plane unit cell, in contrast to the expected tensorial behavior of the field effect mobility. [source]


Three-dimensional visualization of the inner structure of single crystals by step-scanning white X-ray section topography

JOURNAL OF SYNCHROTRON RADIATION, Issue 6 2006
Taihei Mukaide
Visualization of the three-dimensional distribution of the crystal defects of large single crystals of calcium fluoride has been demonstrated by white X-ray section topography using sheet-like X-rays (BL28B2 at SPring-8). An image of the three-dimensional distribution of the crystal defects was reconstructed by stacking section topographs, which expressed the images of cross sections of the sample. The section topographs were recorded using a CMOS flat-panel imager or a CCD detector combined with scintillator (Gd2O2S:Tb) and relay lens system. The section topographs were measured by repeating cycles of exposure and sample translation along the direction perpendicular to the top face of the sample. Using high-brilliance and high-energy white X-rays (,60,keV) efficiently, visualization of the three-dimensional structure of subgrains of a sample of up to 60,mm in diameter was achieved. Furthermore, the three-dimensional distribution of the glide plane in the crystal was visualized by reconstructing the linear contrast of the glide plane. [source]


Neutron protein crystallography: beyond the folding structure of biological macromolecules

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 1 2008
Nobuo Niimura
Neutron diffraction provides an experimental method of directly locating H atoms in proteins, a technique complementary to ultra-high-resolution X-ray diffraction. Three different types of neutron diffractometers for biological macromolecules have been constructed in Japan, France and the USA, and they have been used to determine the crystal structures of proteins up to resolution limits of 1.5,2.5,Å. Results relating to H-atom positions and hydration patterns in proteins have been obtained from these studies. Examples include the geometrical details of hydrogen bonds, the role of H atoms in enzymatic activity, CH3 configuration, H/D exchange in proteins and oligonucleotides, and the dynamical behavior of hydration structures, all of which have been extracted from these structural results and reviewed. Other techniques, such as the growth of large single crystals and a database of hydrogen and hydration in proteins, are described. [source]