Home About us Contact | |||
Large Rotations (large + rotation)
Selected AbstractsEvolution of an accretionary complex along the north arm of the Island of Sulawesi, IndonesiaISLAND ARC, Issue 1 2004Yusuf Surachman Djajadihardja Abstract Seismic reflections across the accretionary prism of the North Sulawesi provide excellent images of the various structural domains landward of the frontal thrust. The structural domain in the accretionary prism area of the North Sulawesi Trench can be divided into four zones: (i) trench area; (ii) Zone A; (iii) Zone B; and (iv) Zone C. Zone A is an active imbrication zone where a decollement is well imaged. Zone B is dominated by out-of-sequence thrusts and small slope basins. Zone C is structurally high in the forearc basin, overlain by a thick sedimentary sequence. The subducted and accreted sedimentary packages are separated by the decollement. Topography of the oceanic basement is rough, both in the basin and beneath the wedge. The accretionary prism along the North Sulawesi Trench grew because of the collision between eastern Sulawesi and the Bangai,Sula microcontinent along the Sorong Fault in the middle Miocene. This collision produced a large rotation of the north arm of Sulawesi Island. Rotation and northward movement of the north arm of Sulawesi may have resulted in southward subduction and development of the accretionary wedge along North Sulawesi. Lateral variations are wider in the western areas relative to the eastern areas. This is due to greater convergence rates in the western area: 5 km/My for the west and 1.5 km/My for the east. An accretionary prism model indicates that the initiation of growth of the accretionary prism in the North Sulawesi Trench occurred approximately 5 Ma. A comparison between the North Sulawesi accretionary prism and the Nankai accretionary prism of Japan reveals similar internal structures, suggesting similar mechanical processes and structural evolution. [source] Analysis of single rock blocks for general failure modes under conservative and non-conservative forcesINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 14 2007F. Tonon Abstract After describing the kinematics of a generic rigid block subjected to large rotations and displacements, the Udwadia's General Principle of Mechanics is applied to the dynamics of a rigid block with frictional constraints to show that the reaction forces and moments are indeterminate. Thus, the paper presents an incremental-iterative algorithm for analysing general failure modes of rock blocks subject to generic forces, including non-conservative forces such as water forces. Consistent stiffness matrices have been developed that fully exploit the quadratic convergence of the adopted Newton,Raphson iterative scheme. The algorithm takes into account large block displacements and rotations, which together with non-conservative forces make the stiffness matrix non-symmetric. Also included in the algorithm are in situ stress and fracture dilatancy, which introduces non-symmetric rank-one modifications to the stiffness matrix. Progressive failure is captured by the algorithm, which has proven capable of detecting numerically challenging failure modes, such as rotations about only one point. Failure modes may originate from a limit point or from dynamic instability (divergence or flutter); equilibrium paths emanating from bifurcation points are followed by the algorithm. The algorithm identifies both static and dynamic failure modes. The calculation of the factor of safety comes with no overhead. Examples show the equilibrium path of a rock block that undergoes slumping failure must first pass through a bifurcation point, unless the block is laterally constrained. Rock blocks subjected to water forces (or other non-conservative forces) may undergo flutter failure before reaching a limit point. Copyright © 2007 John Wiley & Sons, Ltd. [source] A finite-strain quadrilateral shell element based on discrete Kirchhoff,Love constraintsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 9 2005Pedro M. A. Areias Abstract This paper improves the 16 degrees-of-freedom quadrilateral shell element based on pointwise Kirchhoff,Love constraints and introduces a consistent large strain formulation for this element. The model is based on classical shell kinematics combined with continuum constitutive laws. The resulting element is valid for large rotations and displacements. The degrees-of-freedom are the displacements at the corner nodes and one rotation at each mid-side node. The formulation is free of enhancements, it is almost fully integrated and is found to be immune to locking or unstable modes. The patch test is satisfied. In addition, the formulation is simple and amenable to efficient incorporation in large-scale codes as no internal degrees-of-freedom are employed, and the overall calculations are very efficient. Results are presented for linear and non-linear problems. Copyright © 2005 John Wiley & Sons, Ltd. [source] Optimal design and optimal control of structures undergoing finite rotations and elastic deformationsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 14 2004A. Ibrahimbegovic Abstract In this work, we deal with the optimal design and optimal control of structures undergoing large rotations and large elastic deformations. In other words, we show how to find the corresponding initial configuration through optimal design or the corresponding set of multiple load parameters through optimal control, in order to recover a desired deformed configuration or some desirable features of the deformed configuration as specified more precisely by the objective or cost function. The model problem chosen to illustrate the proposed optimal design and optimal control methodologies is the one of geometrically exact beam. First, we present a non-standard formulation of the optimal design and optimal control problems, relying on the method of Lagrange multipliers in order to make the mechanics state variables independent from either design or control variables and thus provide the most general basis for developing the best possible solution procedure. Two different solution procedures are then explored, one based on the diffuse approximation of response function and gradient method and the other one based on genetic algorithm. A number of numerical examples are given in order to illustrate both the advantages and potential drawbacks of each of the presented procedures. Copyright © 2004 John Wiley & Sons, Ltd. [source] WHEATSHEAF: an algorithm to average protein structure ensemblesACTA CRYSTALLOGRAPHICA SECTION D, Issue 1 2005David Thomas A new algorithm is described that forms a single structure representative of ensembles of structures from files in the format used by the Protein Data Bank. A first attempt is made by averaging in the space spanned by bond lengths, inter-bond rotations and symmetry-multiplied dihedral rotations. This normally produces well formed regular secondary-structure elements, but the intervening less well ordered regions are often distorted because of the invalidity of averaging large rotations about divergent axes. For this reason, the algorithm includes a second stage that pulls the interatomic distances towards more fully representative values. Results produced by this method have proved better as judged by conventional quality checks than any input structure in nearly all cases tested so far, especially for the backbone, and much better than those produced by commonly used alternative methods. [source] |