Large Genome (large + genome)

Distribution by Scientific Domains


Selected Abstracts


Leptospira: a spirochaete with a hybrid outer membrane

MOLECULAR MICROBIOLOGY, Issue 4 2010
David A. Haake
Summary Leptospira is a genus of spirochaetes that includes organisms with a variety of lifestyles ranging from aquatic saprophytes to invasive pathogens. Adaptation to a wide variety of environmental conditions has required leptospires to acquire a large genome and a complex outer membrane with features that are unique among bacteria. The most abundant surface-exposed outer membrane proteins are lipoproteins that are integrated into the lipid bilayer by amino-terminal fatty acids. In contrast to many spirochaetes, the leptospiral outer membrane also includes lipopolysaccharide and many homologues of well-known beta-barrel transmembrane outer membrane proteins. Research on leptospiral transmembrane outer membrane proteins has lagged behind studies of lipoproteins because of their aberrant behaviour by Triton X-114 detergent fractionation. For this reason, transmembrane outer membrane proteins are best characterized by assessing membrane integration and surface exposure. Not surprisingly, some outer membrane proteins that mediate host,pathogen interactions are strongly regulated by conditions found in mammalian host tissues. For example, the leptospiral immunoglobulin-like (Lig) repeat proteins are dramatically induced by osmolarity and mediate interactions with host extracellular matrix proteins. Development of molecular genetic tools are making it possible to finally understand the roles of these and other outer membrane proteins in mechanisms of leptospiral pathogenesis. [source]


Male gametophyte development in bread wheat (Triticum aestivum L.): molecular, cellular, and biochemical analyses of a sporophytic contribution to pollen wall ontogeny

THE PLANT JOURNAL, Issue 6 2002
Aiming Wang
Summary Bread wheat (hexaploid AABBDD genome; 16 billion basepairs) is a genetically complex, self-pollinating plant with bisexual flowers that produce short-lived pollen. Very little is known about the molecular biology of its gametophyte development despite a longstanding interest in hybrid seeds. We present here a comprehensive characterization of three apparently homeologous genes (TAA1a, TAA1b and TAA1c) and demonstrate their anther-specific biochemical function. These eight-exon genes, found at only one copy per haploid complement in this large genome, express specifically within the sporophytic tapetum cells. The presence of TAA1 mRNA and protein was evident only at specific stages of pollen development as the microspore wall thickened during the progression of free microspores into vacuolated-microspores. This temporal regulation matched the assembly of wall-impregnated sporopollenin, a phenylpropanoid-lipid polymer containing very long chain fatty alcohols (VLCFAlc), described in the literature. Our results establish that sporophytic genes contribute to the production of fatty alcohols: Transgenic expression of TAA1 afforded production of long/VLCFAlc in tobacco seeds (18 : 1; 20 : 1; 22 : 1; 24 : 0; 26 : 0) and in Escherichia coli (14 : 0; 16 : 0; 18 : 1), suggesting biochemical versatility of TAA1 with respect to cellular milieu and substrate spectrum. Pollen walls additionally contain fatty alcohols in the form of wax esters and other lipids, and some of these lipids are known to play a role in the highly specific sexual interactions at the pollen,pistil interface. This study provides a handle to study these and to manipulate pollen traits, and, furthermore, to understand the molecular biology of fatty alcohol metabolism in general. [source]


Viral appropriation of apoptotic and NF-,B signaling pathways

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2004
Andrew G. Bowie
Abstract Viruses utilize a variety of strategies to evade the host immune response and replicate in the cells they infect. The comparatively large genomes of the Orthopoxviruses and gammaherpesviruses encode several immunomodulatory proteins that are homologous to component of the innate immune system of host cells, which are reviewed here. However, the viral mechanisms used to survive host responses are quite distinct between these two virus families. Poxviruses undergo continuous lytic replication in the host cytoplasm while expressing many genes that inhibit innate immune responses. In contrast, herpesviruses persist in a latent state during much of their lifecycle while expressing only a limited number of relatively non-immunogenic viral proteins, thereby avoiding the adaptive immune response. Poxviruses suppress, whereas latent gammaherpesviruses activate, signaling by NF-,B, yet both viruses target similar host signaling pathways to suppress the apoptotic response. Here, modulation of apoptotic and NF-,B signal transduction pathways are examined as examples of common pathways appropriated in contrasting ways by herpesviruses and poxviruses. © 2004 Wiley-Liss, Inc. [source]


Genetic parsimony: a factor in the evolution of complexity, order and emergence

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2006
A. R. D. STEBBING
Two conjectures, drawn from Gregory Chaitin's Algorithmic Information Theory, are examined with respect to the relationship between an algorithm and its product; in particular his finding that, where an algorithm is minimal, its length provides a measure of the complexity of the product. Algorithmic complexity is considered from the perspective of the relationship between genotype and phenotype, which Chaitin suggests is analogous to other algorithm-product systems. The first conjecture is that the genome is a minimal set of algorithms for the phenotype. Evidence is presented for a factor, here termed ,genetic parsimony', which is thought to have helped minimize the growth of genome size during evolution. Species that depend on rapid replication, such as prokaryotes which are generally r -selected are more likely to have small genomes, while the K -strategists accumulate introns and have large genomes. The second conjecture is that genome size could provide a measure of organism complexity. A surrogate index for coding DNA is in agreement with an established phenotypic index (number of cell types), in exhibiting an evolutionary trend of increasing organism complexity over time. Evidence for genetic parsimony indicates that simplicity in coding has been selected, and is responsible for phenotypic order. It is proposed that order evolved because order in the phenotype can be encoded more economically than disorder. Thus order arises due to selection for genetic parsimony, as does the evolution of other ,emergent' properties. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 88, 295,308. [source]