Large Deformation Analysis (large + deformation_analysis)

Distribution by Scientific Domains


Selected Abstracts


An operator-split ALE model for large deformation analysis of geomaterials

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 12 2007
Y. Di
Abstract Analysis of large deformation of geomaterials subjected to time-varying load poses a very difficult problem for the geotechnical profession. Conventional finite element schemes using the updated Lagrangian formulation may suffer from serious numerical difficulties when the deformation of geomaterials is significantly large such that the discretized elements are severely distorted. In this paper, an operator-split arbitrary Lagrangian,Eulerian (ALE) finite element model is proposed for large deformation analysis of a soil mass subjected to either static or dynamic loading, where the soil is modelled as a saturated porous material with solid,fluid coupling and strong material non-linearity. Each time step of the operator-split ALE algorithm consists of a Lagrangian step and an Eulerian step. In the Lagrangian step, the equilibrium equation and continuity equation of the saturated soil are solved by the updated Lagrangian method. In the Eulerian step, mesh smoothing is performed for the deformed body and the state variables obtained in the updated Lagrangian step are then transferred to the new mesh system. The accuracy and efficiency of the proposed ALE method are verified by comparison of its results with the results produced by an analytical solution for one-dimensional finite elastic consolidation of a soil column and with the results from the small strain finite element analysis and the updated Lagrangian analysis. Its performance is further illustrated by simulation of a complex problem involving the transient response of an embankment subjected to earthquake loading. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Solute transport through a deforming porous medium

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 7 2002
Glen P. Peters
Abstract Solute transport through a porous medium is typically modelled assuming the porous medium is rigid. However, many applications exist where the porous medium is deforming, including, municipal landfill liners, mine tailings dams, and land subsidence. In this paper, mass balance laws are used to derive the flow and transport equations for a deforming porous medium. The equations are derived in both spatial and material co-ordinate systems. Solute transport through an engineered landfill liner is used as an illustrative example to show the differences between the theory for a rigid porous medium, and small and large deformation analysis of a deforming porous medium. It is found that the large deformation model produces shorter solute breakthrough times, followed by the small deformation model, and then the rigid porous medium model. It is also found that it is important to include spatial and temporal void ratio variations in the large deformation analysis. It is shown that a non-linear large deformation model may greatly reduce the solute breakthrough time, compared to a standard transport analysis typically employed by environmental engineers. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Significance of equal principal stretches in computational hyperelasticity

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 9 2005
Boris Jeremi
Abstract The computational significance of the case of two or three equal principal stretches in large deformation analysis is investigated in this paper. A detailed analytical study shows that the previously suggested solutions, based on numerical perturbations, are not adequate and might lead to erroneous results. A number of examples are presented to illustrate the approach. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Overall numerical simulation of extrusion blow molding process

POLYMER ENGINEERING & SCIENCE, Issue 8 2000
Shin-Ichiro Tanifuji
This paper focuses on the overall numerical simulation of the parison formation and inflation process of extrusion blow molding. The competing effects due to swell and drawdown in the parison formation process were analyzed by a Lagrangian Eulerian (LE) finite element method (FEM) using an automatic remeshing technique. The parison extruded through an annular die was modeled as an axisymmetric unsteady nonisothermal flow with free surfaces and its viscoelastic properties were described by a K-BKZ integral constitutive equation. An unsteady die-swell simulation was performed to predict the time course of the extrudate parison shape under the influence of gravity and the parison controller. In addition, an unsteady large deformation analysis of the parison inflation process was also carried out using a three-dimensional membrane FEM for viscoelastic material. The inflation sequence for the parison molded into a complex-shaped mold cavity was analyzed. The numerical results were verified using experimental data from each of the sub-processes. The greatest advantage of the overall simulation is that the variation in the parison dimension caused by the swell and drawdown effect can be incorporated into the inflation analysis, and consequently, the accuracy of the numerical prediction can be enhanced. The overall simulation technique provides a rational means to assist the mold design and the determination of the optimal process conditions. [source]