Laplace Problem (laplace + problem)

Distribution by Scientific Domains


Selected Abstracts


A relation between the logarithmic capacity and the condition number of the BEM-matrices

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 7 2007
W. Dijkstra
Abstract We establish a relation between the logarithmic capacity of a two-dimensional domain and the solvability of the boundary integral equation for the Laplace problem on that domain. It is proved that when the logarithmic capacity is equal to one the boundary integral equation does not have a unique solution. A similar result is derived for the linear algebraic systems that appear in the boundary element method. As these systems are based on the boundary integral equation, no unique solution exists when the logarithmic capacity is equal to one. Hence, the system matrix is ill-conditioned. We give several examples to illustrate this and investigate the analogies between the Laplace problem with Dirichlet and mixed boundary conditions. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz,Zhu error estimator

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 1 2003
M. Picasso
Abstract The framework of Formaggia and Perotto (Numerische Mathematik 2001; 89: 641,667) is considered to derive a new anisotropic error indicator for a Laplace problem in the energy norm. The matrix containing the error gradient is approached using a Zienkiewicz,Zhu error estimator. A numerical study of the effectivity index is proposed for anisotropic unstructured meshes, showing that our indicator is sharp. An anisotropic adaptive algorithm is implemented, aiming at controlling the estimated relative error. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Numerical analysis of a non-singular boundary integral method: Part II: The general case

MATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 7 2002
P. Dreyfuss
In order to numerically solve the interior and the exterior Dirichlet problems for the Laplacian operator, we have presented in a previous paper a method which consists in inverting, on a finite element space, a non-singular integral operator for circular domains. This operator was described as a geometrical perturbation of the Steklov operator, and we have precisely defined the relation between the geometrical perturbation and the dimension of the finite element space, in order to obtain a stable and convergent scheme in which there are non-singular integrals. We have also presented another point of view under which the method can be considered as a special quadrature formula method for the standard piecewise linear Galerkin approximation of the weakly singular single-layer potential. In the present paper, we extend the results given in the previous paper to more general cases for which the Laplace problem is set on any ,,, domains. We prove that the properties of stability and convergence remain valid. Copyright © 2002 John Wiley & Sons, Ltd. [source]


A practical determination strategy of optimal threshold parameter for matrix compression in wavelet BEM

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 2 2003
Kazuhiro Koro
Abstract A practical strategy is developed to determine the optimal threshold parameter for wavelet-based boundary element (BE) analysis. The optimal parameter is determined so that the amount of storage (and computational work) is minimized without reducing the accuracy of the BE solution. In the present study, the Beylkin-type truncation scheme is used in the matrix assembly. To avoid unnecessary integration concerning the truncated entries of a coefficient matrix, a priori estimation of the matrix entries is introduced and thus the truncated entries are determined twice: before and after matrix assembly. The optimal threshold parameter is set based on the equilibrium of the truncation and discretization errors. These errors are estimated in the residual sense. For Laplace problems the discretization error is, in particular, indicated with the potential's contribution ,c, to the residual norm ,R, used in error estimation for mesh adaptation. Since the normalized residual norm ,c,/,u, (u: the potential components of BE solution) cannot be computed without main BE analysis, the discretization error is estimated by the approximate expression constructed through subsidiary BE calculation with smaller degree of freedom (DOF). The matrix compression using the proposed optimal threshold parameter enables us to generate a sparse matrix with O(N1+,) (0,,<1) non-zero entries. Although the quasi-optimal memory requirements and complexity are not attained, the compression rate of a few per cent can be achieved for N,1000. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Null-field approach for Laplace problems with circular boundaries using degenerate kernels

NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, Issue 1 2009
Jeng-Tzong Chen
Abstract In this article, a semi-analytical method for solving the Laplace problems with circular boundaries using the null-field integral equation is proposed. The main gain of using the degenerate kernels is to avoid calculating the principal values. To fully utilize the geometry of circular boundary, degenerate kernels for the fundamental solution and Fourier series for boundary densities are incorporated into the null-field integral equation. An adaptive observer system is considered to fully employ the property of degenerate kernels in the polar coordinates. A linear algebraic system is obtained without boundary discretization. By matching the boundary condition, the unknown coefficients can be determined. The present method can be seen as one kind of semianalytical approaches since error only attributes to the truncated Fourier series. For the eccentric case, vector decomposition technique for the normal and tangential directions is carefully considered in implementing the hypersingular equation in mathematical essence although we transform it to summability to divergent series. The five advantages, well-posed linear algebraic system, principal value free, elimination of boundary-layer effect, exponential convergence, and mesh free, are achieved. Several examples involving infinite, half-plane, and bounded domains with circular boundaries are given to demonstrate the validity of the proposed method. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009 [source]