Langmuir Isotherm (langmuir + isotherm)

Distribution by Scientific Domains


Selected Abstracts


Design of Simulated Moving Bed Plants by Using Noncompetitive Langmuir Isotherms

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 10 2009
M. Fütterer
Abstract The simulated moving bed process is increasingly used for the separation of binary mixtures. To ensure proper operation, the volumetric flow rates and the time interval must be exactly adjusted. This study presents a general method for determining the control variables for a dispersion-free SMB process. For noncompetitive Langmuir isotherms, explicit equations are derived for the case of complete separation. The proposed method allows both a good estimation of the time trajectories of the concentrations at the drains and the design of new applications for optimization and control of SMB plants. [source]


Photoluminescence Detection of Biomolecules by Antibody-Functionalized Diatom Biosilica

ADVANCED FUNCTIONAL MATERIALS, Issue 6 2009
Debra K. Gale
Abstract Diatoms are single-celled algae that make microscale silica shells called "frustules", which possess intricate nanoscale features imbedded within periodic two-dimensional pore arrays. In this study, antibody-functionalized diatom biosilica frustules serve as a microscale biosensor platform for selective and label-free photoluminescence (PL)-based detection of immunocomplex formation. The model antibody rabbit immunoglobulin G (IgG) is covalently attached to the frustule biosilica of the disk-shaped, 10-µm diatom Cyclotella sp. by silanol amination and crosslinking steps to a surface site density of 3948,±,499 IgG molecules µm,2. Functionalization of the diatom biosilica with the nucleophilic IgG antibody amplifies the intrinsic blue PL of diatom biosilica by a factor of six. Furthermore, immunocomplex formation with the complimentary antigen anti-rabbit IgG further increases the peak PL intensity by at least a factor of three, whereas a non-complimentary antigen (goat anti-human IgG) does not. The nucleophilic immunocomplex increases the PL intensity by donating electrons to non-radiative defect sites on the photoluminescent diatom biosilica, thereby decreasing non-radiative electron decay and increasing radiative emission. This unique enhancement in PL emission is correlated to the antigen (goat anti-rabbit IgG) concentration, where immunocomplex binding follows a Langmuir isotherm with binding constant of 2.8,±,0.7,×,10,7M. [source]


Preparation of a heterogeneous hollow-fiber affinity membrane having a mercapto chelating resin and its recovery of Hg2+ cations

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008
Bing Wang
Abstract A kind of heterogeneous hollow-fiber affinity filter membrane with a high chelating capacity for Hg2+ was prepared by phase separation with blends of a mercapto chelating resin and polysulfone as the membrane materials, N,N -dimethylacetamide as the solvent, and water as the extraction solvent. The adsorption isotherms of the hollow-fiber affinity filter membrane for Hg2+ were determined. The heterogeneous hollow-fiber affinity filter membrane was used for the adsorption of Hg2+ cations through the coordination of the mercapto group and Hg2+ cations, and the effects of the morphology and structure of the affinity membrane on the chelating properties were investigated. The chelating conditions, including the chelating resin grain size, pH value, concentration of the metallic ion solution, mobile phase conditions, and operating parameters, had significant effects on the chelating capacity of the hollow-fiber affinity filter membrane. The results revealed that the greatest chelating capacity of the hollow-fiber affinity filter membrane for Hg2+ was 1090 ,g/cm2 of membrane under appropriate conditions, and the adsorption isotherms of Hg2+ could be described by the Langmuir isotherm. The dynamic chelating experiments indicated that the hollow-fiber affinity membrane could be operated at a high feed flow rate and that large-scale removal of Hg2+ could be realized. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Recovery of lipase by adsorption at the n -hexadecane,water interface

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 11 2003
Hui-Min Wang
Abstract A novel separation process based on the hydrophobic adsorption at the n -hexadecane,water interface was developed for the recovery of Acinetobacter radioresistens lipase from a pre-treated fermentation broth. In a mixture containing water, lipase and n -hexadecane, a water-in-oil emulsion was formed when the n -hexadecane-to-water ratio (o/w ratio) was larger than 3, and a large amount of lipase was found to be adsorbed at the interface. Compared with the oil-in-water emulsion (occurring when o/w ratio < 3), the water-in-oil emulsion generated smaller droplets and larger interfacial area, and was more stable. The harvested emulsion phase could be centrifuged to give an aqueous, concentrated lipase solution. Adsorption of lipase at the interface could be described by the Langmuir isotherm. For lipase concentrations ranging from 8.4 to 87.2 U cm,3, a single-stage adsorption resulted in a six- to four-fold concentration and 16,45% activity recovery, where lipase concentration was the dominant factor. A method using data from a single-stage adsorption to predict multiple-stage operation was described, and the agreement between the experimental and the predicted results was good. To improve the enzyme recovery, a multiple-run adsorption process was proposed. The use of salts enhanced the hydrophobic interaction between lipase and n -hexadecane. Advantages of the proposed process include simple operation, low operational cost, environmentally friendly, no requirement for pre-concentration of the enzyme solution, and negligible enzyme denaturation. Copyright © 2003 Society of Chemical Industry [source]


The removal of reactive azo dyes by natural and modified zeolites

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 7 2003
B Arma
Abstract The adsorption mechanism of three reactive dyes by zeolite has been examined with the aim of identifying the ability of zeolite to remove textile dyes from aqueous solutions. Towards this aim, a series of batch adsorption experiments was carried out, along with determination of the electrokinetic properties of both natural and modified zeolites. The adsorbent in this study is a clinoptilolite from the Gördes region of Turkey. The reactive dyes CI Reactive Black 5, Red 239 and Yellow 176 are typical azo dyes extensively used in textile dyeing. Adsorption tests were carried out as a function of mixing time, solids concentration, dye concentration and pH. The adsorption results indicate that the natural zeolite has a limited adsorption capacity for reactive dyes but is substantially improved upon modifying its surfaces with quaternary amines. An electrostatic adsorption mechanism involving the formation of a bilayer of amine molecules on the clinoptilolite surface onto which anionic dye molecules adsorb, depending on their polarities, is proposed. The results are also supported by electrokinetic measurements. The adsorption data were fitted to the Langmuir isotherm and it was found that the modified sepiolite yields adsorption capacities (qe) of 111, 89 and 61 mg g,1 for Red, Yellow and Black, respectively. These results are comparable to a popular adsorbent, activated carbon. Copyright © 2003 Society of Chemical Industry [source]


Sorption dynamics in fixed-beds of inert core spherical adsorbents including axial dispersion and Langmuir isotherm

AICHE JOURNAL, Issue 7 2009
M. Khosravi Koocheksarayi
Abstract The effects of axial dispersion and Langmuir isotherm on transient behavior of sorption and intraparticle diffusion in fixed-beds packed with monodisperse shell-type/inert core spherical sorbents are studied. The system of partial differential equations of the mathematical model is solved numerically using finite difference methods. Results are presented in the form of breakthrough curves for adsorption and desorption processes. Results reveal that the shape of the breakthrough curves is influenced by both hydrodynamic and kinetic factors. Hydrodynamic factor is governed by axial dispersion and is controlled by changes of Peclet number. Simulation results reveal that when linear adsorption isotherm is used, the effect of axial dispersion on breakthrough curves of the system is important for Peclet numbers smaller than 50, whereas, for Langmuir isotherm axial dispersion is considerable for Peclet numbers less than 80. In addition, effects of type of adsorption isotherms and size of adsorbents on breakthrough curves are investigated, and results are compared with existing reports in the pertinent literature. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Adsorption Kinetics and Thermodynamics of Acid Dyes on a Carboxymethylated Chitosan-Conjugated Magnetic Nano-Adsorbent

MACROMOLECULAR BIOSCIENCE, Issue 3 2005
Yang-Chuang Chang
Abstract Summary: The monodisperse chitosan-conjugated Fe3O4 nanoparticles with a mean diameter of 13.5 nm were fabricated by the carboxymethylation of chitosan and its covalent binding onto Fe3O4 nanoparticles via carbodiimide activation. The carboxymethylated chitosan (CMCH)-conjugated Fe3O4 nanoparticles with about 4.92 wt.-% of CMCH had an isoelectric point of 5.95 and were shown to be quite efficient as anionic magnetic nano-adsorbent for the removal of acid dyes. Both the adsorption capacities of crocein orange G (AO12) and acid green 25 (AG25), as the model compounds, decreased with increasing pH, and the decreasing effect was more significant for AO12. On the contrary, the increase in the ionic strength decreased the adsorption capacity of AG25 but did not affect, obviously, the adsorption capacity of AO12. By the addition of NaCl and NaOH, both AO12 and AG25 could desorb and their different desorption behavior could be attributed to the combined effect of pH and ionic strength. From the adsorption kinetics and thermodynamics studies, it was found that both the adsorption processes of AO12 and AG25 obeyed the pseudo-second-order kinetic model, Langmuir isotherm, and might be surface reaction-controlled. Furthermore, the time required to reach the equilibrium for each one was significantly shorter than those using the micro-sized adsorbents due to the large available surface area. Also, based on the weight of chitosan, the maximum adsorption capacities were 1,883 and 1,471 mg,·,g,1 for AO12 and AG25, respectively, much higher than the reported data. Thus, the anionic magnetic nano-adsorbent could not only be magnetically manipulated but also possessed the advantages of fast adsorption rate and high adsorption capacity. This could be useful in the fields of separation and magnetic carriers. Acid dyes adsorption onto the CMCH-conjugated Fe3O4 nanoparticles. [source]


Binary coalescence of air bubbles in viscous liquids in presence of non-ionic surfactant

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2008
K. Giribabu
Abstract Coalescence of air bubbles is important in gas,liquid reactors and food processing operations. Bubbles can be stabilized by using non-ionic surfactants. Binary coalescence of air bubbles in ethylene glycol and aqueous glycerol solutions were studied in this work in presence of Span 80. A novel set-up was developed to study long coalescence times. Coalescence time was observed to follow broad stochastic distributions in all systems. The distributions were fitted with a stochastic model developed earlier. The surface tension of ethylene glycol and glycerol solutions was measured at various concentrations of Span 80. These data were fitted using a surface equation of state derived from the Langmuir isotherm. The effect of surfactant concentration on coalescence time was explained in terms of the surface excess of the surfactant and the repulsive force generated at the air,liquid interface. The results from this work illustrate the stochastic nature of bubble coalescence in viscous liquids. This work also demonstrates how non-ionic surfactants can stabilize bubbles in such liquids. La coalescence des bulles d'air est importante dans les réacteurs gaz-liquide et les opérations de l'industrie alimentaire. Les bulles peuvent être stabilisées en utilisant des surfactants non ioniques. La coalescence binaire de bulles d'air dans des solutions aqueuses d'éthylène glycol et de glycérol a été étudiée dans ce travail en présence de Span 80. Un nouveau montage a été mis au point pour caractériser les temps de coalescence longs. Le temps de coalescence a été observé afin de suivre les distributions de modèle stochastique dans tous les systèmes. Les distributions ont été calées à un modèle stochastique mis au point antérieurement. La tension de surface des solutions d'éthylène glycol et de glycérol a été mesurée à différentes concentrations de Span 80. Ces données ont été calées à l'aide d'une équation d'état de surface calculée à partir de l'isotherme de Langmuir. L'effet de la concentration de surfactant sur le temps de coalescence est expliqué par l'excès de surface du surfactant et la force répulsive créée à l'interface air-liquide. Les résultats de ce travail illustrent la nature stochastique de la coalescence des bulles dans les liquides visqueux. Ce travail démontre également comment les surfactants non ioniques peuvent stabiliser les bulles dans de tels liquides. [source]


Preparation of bioadsorbents for effective adsorption of a reactive dye in aqueous solution

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2010
Shariff Ibrahim
Abstract The surface of barley straw, an agricultural waste, was modified chemically using a cationic surfactant hexadecylpyridinium chloride monohydrate (CPC) and used as an adsorbent for removal of Reactive Blue 4 (RB4) from aqueous solution. The raw and surfactant-modified barley straws (SMBS) were characterized by Fourier transform infrared and elemental analysis. The stability of CPC adsorbed on straw surface was evaluated by exposing to water and organic solvents. The adsorption was performed on removing RB4 from wastewater in a batch adsorption system. The effects of contact time, initial concentration of dye and pH of solution on RB4 uptake were investigated and discussed. It was found that the removal percentage of RB4 increased with the increase in contact time. Adsorption was favorable at acidic condition and the maximum removal of 100% was obtained at pH 3. Dye-loaded SMBS was stable and percentage of desorption was less than 7% in water. The kinetic studies revealed that the kinetic data fitted well to the pseudo-second-order model. The isotherm study also indicated that RB4 adsorption on SMBS matched well with the Langmuir model other than the Freundlich model. The maximum adsorption capacity determined from the Langmuir isotherm was 29.2 mg g,1 at 25 °C. Copyright © 2010 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Rapid and Effective Adsorption of Lead Ions on Fine Poly(phenylenediamine) Microparticles

CHEMISTRY - A EUROPEAN JOURNAL, Issue 16 2006
Mei-Rong Huang Prof.
Abstract Fine microparticles of poly(p -phenylenediamine) (PpPD) and poly(m -phenylenediamine) (PmPD) were directly synthesized by a facile oxidative precipitation polymerization and their strong ability to adsorb lead ions from aqueous solution was examined. It was found that the degree of adsorption of the lead ions depends on the pH, concentration, and temperature of the lead ion solution, as well as the contact time and microparticle dose. The adsorption data fit the Langmuir isotherm and the process obeyed pseudo-second-order kinetics. According to the Langmuir equation, the maximum adsorption capacities of lead ions onto PpPD and PmPD microparticles at 30,°C are 253.2 and 242.7 mg,g,1, respectively. The highest adsorptivity of lead ions is up to 99.8,%. The adsorption is very rapid with a loading half-time of only 2 min as well as initial adsorption rates of 95.24 and 83.06 mg,g,1 min,1 on PpPD and PmPD particles, respectively. A series of batch experiment results showed that the PpPD microparticles possess an even stronger capability to adsorb lead ions than the PmPD microparticles, but the PmPD microparticles, with a more-quinoid-like structure, show a stronger dependence of lead-ion adsorption on the pH and temperature of the lead-ion solution. A possible adsorption mechanism through complexation between Pb2+ ions and N groups on the macromolecular chains has been proposed. The powerful lead-ion adsorption on the microparticles makes them promising adsorbents for wastewater cleanup. [source]


Water-extractability, free ion activity, and pH explain cadmium sorption and toxicity to Folsomia candida (Collembola) in seven soil-pH combinations

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2004
Cornelis A. M. van Gestel
Abstract Toxicity of cadmium to Folsomia candida was determined in soils at different pHs (3.5, 5.0, and 6.5). The Langmuir sorption constant (KL), based on pore-water or water-extractable concentrations, showed a pH-related increase of cadmium sorption that was most pronounced when using free Cd2+ ion activities ({Cd2+}s). Two-species Langmuir isotherms that used total cadmium concentration ([Cd]) or {Cd2+} and pH in the water-extractable fractions gave the best description of cadmium sorption on all soils together. Cadmium concentrations causing 50% reduction of growth and reproduction (median effective concentrations [EC50s]) differed by a factor of 4.5 to 20 when based on total soil concentrations and increased with increasing pH. However, when based on water-extractable or pore-water [Cd] or {Cd2+}, EC50s decreased with increasing pH, but differences between soils were still a factor of 4.5 to 32. The EC50s differed by less than a factor of 2.2 when based on body [Cd] in the surviving animals. Two-species Langmuir isotherms were used to relate body [Cd] in survivors to {Cd2+}, corrected for pH in water-extractable or pore-water fractions. An excellent description of effects on growth and reproduction was found when related to the body concentrations predicted in this way; the difference in EC50s between soils was reduced to a factor <2. This demonstrates that F. candida is mainly exposed to cadmium through the soil solution, and suggests that principles of a biotic ligand model approach may be applicable for this soil organism. [source]


Equilibrium and kinetic study for the removal of malachite green using activated carbon prepared from Borassus flabellofer male flower

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2010
P. E. Jagadeesh Babu
Abstract Activated carbon was prepared from dried Borassus flabellofer male flower and batch adsorption experiments were conducted to study its potential to remove malachite green (MG) dye. The process was further optimized by studying the operating variables like initial pH of the stock solution, activation temperature, initial dye concentration, adsorbent loading and contact time. The optimized pH and activation temperatures were found to be 7.55 and 450 °C respectively, where further analysis was made using these optimal variables. Linear, Freundlich and Langmuir isotherms were studied and it was found that the Langmuir isotherms have the highest correlation coefficients compared to the others. Further, the sorption kinetics were analysed using pseudo-first-order and pseudo-second-order kinetic models. The data showed that the second-order equation was the more appropriate, which indicate that the intra-particle diffusion is the rate limiting factor. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Modeling of Product Removal during Enzymatic Conversions by Using Affinity Molecules

BIOTECHNOLOGY PROGRESS, Issue 6 2007
Daniël G. R. Halsema
The feasibility of using magnetic particles for in-line product isolation during enzymatic conversion was studied. A comparison was made between a process based on magnetic particles and a conventional adsorption column. The enzymatic reaction was described by two consecutive first-order reactions (synthesis and subsequent hydrolysis), while the adsorption of substrate and product was described by multicomponent Langmuir isotherms. The yield as well as synthesis/hydrolysis ratio were calculated for various system characteristics. The results show that magnetic particles are very effective when the affinity with the particles is specific and for enzymatic conversions involving low ratios of the rate of synthesis versus the rate of hydrolysis. For slow conversions and for low specific affinity molecules column separations are more appropriate. [source]


Design of Simulated Moving Bed Plants by Using Noncompetitive Langmuir Isotherms

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 10 2009
M. Fütterer
Abstract The simulated moving bed process is increasingly used for the separation of binary mixtures. To ensure proper operation, the volumetric flow rates and the time interval must be exactly adjusted. This study presents a general method for determining the control variables for a dispersion-free SMB process. For noncompetitive Langmuir isotherms, explicit equations are derived for the case of complete separation. The proposed method allows both a good estimation of the time trajectories of the concentrations at the drains and the design of new applications for optimization and control of SMB plants. [source]


Theoretical framework for the distribution of trace metals among the operationally defined speciation phases of a sediment

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2001
René A. Nome
Abstract The use of a model based on Langmuir's isotherm to evaluate the metal associated with separate geochemical phases of a sediment is proposed and its validity tested with sediments of certified composition. The model takes into account a standard procedure for a certified reference material (CRM601), which defines, experimentally, a set of sequential extractions that divide the sediment into four operational fractions. The derived equations allow the treatment of data from sediment of Flumendosa Lake, Italy, and certified material CRM601 and also allow the computation of corrected concentrations, i.e., the metal affinities for each fraction. Experimental values for Ni show its low sensitivity and an equal distribution among different phases, which suggests a similar adsorption mechanism in all cases. In the case of Cd, the corrected concentration in the Fe/Mn oxide phase is nine times higher than for the residual fraction. For sediment of the Bèsos River, Spain, results show the percentage distribution of Ni over different fractions. Affinity values for Ni on a Flumendosa Lake sediment have also been calculated. The present model is simple to apply and shows satisfactory agreement with experimental data. [source]