Land Mass (land + mass)

Distribution by Scientific Domains


Selected Abstracts


Limits of life in MgCl2 -containing environments: chaotropicity defines the window

ENVIRONMENTAL MICROBIOLOGY, Issue 3 2007
John E. Hallsworth
Summary The biosphere of planet Earth is delineated by physico-chemical conditions that are too harsh for, or inconsistent with, life processes and maintenance of the structure and function of biomolecules. To define the window of life on Earth (and perhaps gain insights into the limits that life could tolerate elsewhere), and hence understand some of the most unusual biological activities that operate at such extremes, it is necessary to understand the causes and cellular basis of systems failure beyond these windows. Because water plays such a central role in biomolecules and bioprocesses, its availability, properties and behaviour are among the key life-limiting parameters. Saline waters dominate the Earth, with the oceans holding 96.5% of the planet's water. Saline groundwater, inland seas or saltwater lakes hold another 1%, a quantity that exceeds the world's available freshwater. About one quarter of Earth's land mass is underlain by salt, often more than 100 m thick. Evaporite deposits contain hypersaline waters within and between their salt crystals, and even contain large subterranean salt lakes, and therefore represent significant microbial habitats. Salts have a major impact on the nature and extent of the biosphere, because solutes radically influence water's availability (water activity) and exert other activities that also affect biological systems (e.g. ionic, kosmotropic, chaotropic and those that affect cell turgor), and as a consequence can be major stressors of cellular systems. Despite the stressor effects of salts, hypersaline environments can be heavily populated with salt-tolerant or -dependent microbes, the halophiles. The most common salt in hypersaline environments is NaCl, but many evaporite deposits and brines are also rich in other salts, including MgCl2 (several hundred million tonnes of bischofite, MgCl2·6H2O, occur in one formation alone). Magnesium (Mg) is the third most abundant element dissolved in seawater and is ubiquitous in the Earth's crust, and throughout the Solar System, where it exists in association with a variety of anions. Magnesium chloride is exceptionally soluble in water, so can achieve high concentrations (> 5 M) in brines. However, while NaCl-dominated hypersaline environments are habitats for a rich variety of salt-adapted microbes, there are contradictory indications of life in MgCl2 -rich environments. In this work, we have sought to obtain new insights into how MgCl2 affects cellular systems, to assess whether MgCl2 can determine the window of life, and, if so, to derive a value for this window. We have dissected two relevant cellular stress-related activities of MgCl2 solutions, namely water activity reduction and chaotropicity, and analysed signatures of life at different concentrations of MgCl2 in a natural environment, namely the 0.05,5.05 M MgCl2 gradient of the seawater : hypersaline brine interface of Discovery Basin , a large, stable brine lake almost saturated with MgCl2, located on the Mediterranean Sea floor. We document here the exceptional chaotropicity of MgCl2, and show that this property, rather than water activity reduction, inhibits life by denaturing biological macromolecules. In vitro, a test enzyme was totally inhibited by MgCl2 at concentrations below 1 M; and culture medium with MgCl2 concentrations above 1.26 M inhibited the growth of microbes in samples taken from all parts of the Discovery interface. Although DNA and rRNA from key microbial groups (sulfate reducers and methanogens) were detected along the entire MgCl2 gradient of the seawater : Discovery brine interface, mRNA, a highly labile indicator of active microbes, was recovered only from the upper part of the chemocline at MgCl2 concentrations of less than 2.3 M. We also show that the extreme chaotropicity of MgCl2 at high concentrations not only denatures macromolecules, but also preserves the more stable ones: such indicator molecules, hitherto regarded as evidence of life, may thus be misleading signatures in chaotropic environments. Thus, the chaotropicity of MgCl2 would appear to be a window-of-life-determining parameter, and the results obtained here suggest that the upper MgCl2 concentration for life, in the absence of compensating (e.g. kosmotropic) solutes, is about 2.3 M. [source]


Of Navies and Navels: Britain as A Mental Island

GEOGRAFISKA ANNALER SERIES B: HUMAN GEOGRAPHY, Issue 4 2005
Alex Law
Abstract In this paper, the conception of .Great Britain. , a wholly unsatisfactory nomenclature , as an island nation is examined. In this case, a relatively small land mass acted as an originary point of departure for outward-bound Great Power projections across the open spaces of seas. This paper further explores the varied implications for nationalism within Britain of the diverse island ,roots' of the British navel and the ,routes' of British navalism. Three themes recur in the popular mobilization of British maritime island nationalism: the besieged island, the island as universal exemplar of civilization, and the navy as national protector. Some consideration is given to the significance of island symbols such as Britannia as a marker of the fate of great island nationalism. [source]


Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 599 2004
Hisashi Nakamura
Abstract Time evolution and dynamics of an upper-level blocking ridge over the Far East and the associated surface high over the Sea of Okhotsk that give rise to abnormal summertime coolness over eastern Japan are investigated through a composite analysis applied to distinct surface high events. The formation mechanism and vertical structure of the blocking differ fundamentally between May and July, attributable to seasonal changes in the jet structure, storm-track activity over the Far East and the land,sea thermal contrast within the Okhotsk region. In May, forcing from migratory eddies is strong enough for precursory anticyclonic anomalies retrograding slowly over the North Pacific to develop into a blocking ridge. The ridge remains equivalent barotropic under the weak land,sea thermal contrast in the Okhotsk region. In contrast, the eddy forcing is no longer the primary factor for the blocking formation in July, in the presence of the weakened and split westerlies. Rather, the propagation of a stationary Rossby wave packet that has emanated from precursory anticyclonic anomalies over northern Europe stagnates over the Far East, and the subsequent local breaking of the packet leads to the blocking formation. In a particular case in July 1993, a wave packet involved in blocking formation could be traced back as far upstream as the east coast of North America over the two previous weeks. Acting on the strong thermal contrast in July between the cool sea surface and a warm land mass to the west, the anomalous surface easterlies induced by the blocking ridge can build up a cold surface anticyclone through cold advection, rendering the blocking anomalies distinctly baroclinic. Copyright © 2004 Royal Meteorological Society [source]


Evolution on a shaky piece of Gondwana: is local endemism recent in New Caledonia?

CLADISTICS, Issue 1 2005
Jérôme Murienne
New Caledonia is well known as a hot spot of biodiversity whose origin as a land mass can be traced back to the Gondwanan supercontinent. The local flora and fauna, in addition to being remarkably rich and endemic, comprise many supposedly relictual groups. Does the New Caledonian biota date back to Gondwanan times, building up its richness and endemism over 100 Myr or does it result from recent diversifications after Tertiary geological catastrophic events? Here we use a molecular phylogenetic approach to answer this question with the study of the Neocaledonian cockroach genus Angustonicus belonging to the subfamily Tryonicinae from Australia and New Caledonia. Both geological and molecular dating show that the diversification of this group is less than two million years old, whatever the date of its origin itself. This dating is not consistent with hypotheses of Gondwanan richness and endemism in New Caledonian biota. In other terms, local richness and endemism at the specific level are not necessarily related to an old Gondwanan origin of the Neocaledonian groups. © The Willi Hennig Society 2005. [source]


Tooth row counts, vicariance, and the distribution of the sand tiger shark Carcharias taurus

ECOGRAPHY, Issue 5 2003
Luis O. Lucifora
Geographic variation in tooth row counts among sand tiger sharks Carcharias taurus (Chondrichthyes), from the SW Atlantic, NW Atlantic and the East China Sea is analyzed in this paper. We found significant differences between sand tigers from the SW Atlantic (Southern Hemisphere population) and each of the other two (Northern Hemisphere) regions in the number of upper lateral tooth rows, and between individuals from the SW Atlantic and the East China Sea in the total number of upper tooth rows. Sand tiger sharks from the two Northern Hemisphere populations did not differ in any of the studied variables. Our results agree with comparisons of vertebral counts between sand tiger sharks from Southern and Northern Hemispheres. Both lines of evidence suggest that Southern and Northern Hemisphere populations of C. taurus were isolated to a larger extent than populations of the Northern Hemisphere. The fossil record of the genus Carcharias begins in the Early Cretaceous and C. taurus is certainly known since the Late Miocene. During the Miocene, the Tethys Sea separating northern and southern land masses was still present and it provided a continuous temperate shallow sea that could allow dispersal of sand tiger sharks along Northern Hemisphere seas. Independent observations on the distribution and evolutionary history of the genera Myripristis, Neoniphon, Sargocentron and Aphanius, and genetic studies on the temperate shark genus Mustelus that indicate a close relationship between the Indo-Pacific M. manazo and the Mediterranean M. asterias suggest that this hypothesis is plausible and deserves to be tested. [source]


Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands

JOURNAL OF BIOGEOGRAPHY, Issue 2 2006
Robert H. Cowie
Abstract Vicariance biogeography emerged several decades ago from the fusion of cladistics and plate tectonics, and quickly came to dominate historical biogeography. The field has since been largely constrained by the notion that only processes of vicariance and not dispersal offer testable patterns and refutable hypotheses, dispersal being a random process essentially adding only noise to a vicariant system. A consequence of this thinking seems to have been a focus on the biogeography of continents and continental islands, considering the biogeography of oceanic islands less worthy of scientific attention because, being dependent on stochastic dispersal, it was uninteresting. However, the importance of dispersal is increasingly being recognized, and here we stress its fundamental role in the generation of biodiversity on oceanic islands that have been created in situ, never connected to larger land masses. Historical dispersal patterns resulting in modern distributions, once considered unknowable, are now being revealed in many plant and animal taxa, in large part through the analysis of polymorphic molecular markers. We emphasize the profound evolutionary insights that oceanic island biodiversity has provided, and the fact that, although small in area, oceanic islands harbour disproportionately high biodiversity and numbers of endemic taxa. We further stress the importance of continuing research on mechanisms generating oceanic island biodiversity, especially detection of general, non-random patterns of dispersal, and hence the need to acknowledge oceanic dispersal as significant and worthy of research. [source]


What do human economies, large islands and forest fragments reveal about the factors limiting ecosystem evolution?

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2009
E. G. LEIGH
Abstract What factors limit ecosystem evolution? Like human economies, ecosystems are arenas where agents compete for locally limiting resources. Like economies, but unlike genes, ecosystems are not units of selection. In both economies and ecosystems, productivity, diversity of occupations or species and intensity of competition presuppose interdependence among many different agents. In both, competitive dominants need abundant, varied resources, and many agents' products or services, to support the activity and responsiveness needed to maintain dominance. Comparing different-sized land masses suggests that productivity is lower on islands whose area is too small to maintain some of the interdependences that maintain diversity, productivity and competitiveness in mainland ecosystems. Islands lacking the rare, metabolically active dominants that make competition so intense in mainland ecosystems are more easily invaded by introduced exotics. Studies of islets in reservoirs identify mechanisms generating these phenomena. These phenomena suggest how continued fragmentation will affect future ,natural' ecosystems. [source]


The importance of ecosystem-based management for conserving aquatic migratory pathways on tropical high islands: a case study from Fiji

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2010
Aaron P. Jenkins
Abstract 1.Tropical, high islands of the Pacific have developed unique freshwater fish faunas that are currently threatened by a range of human activities. This paper documents distinct differences in life history strategies from fish communities found in streams of Fiji compared with fish assemblages in freshwater systems on larger continental land masses. While river systems of northern Australia and Papua New Guinea have a high proportion of freshwater residents, the Fiji fauna is dominated by amphidromous gobiids that migrate across a broad range of habitats throughout their life cycle. 2.The number of amphidromous fish species and the number of all fish species in mid-reaches of Fiji rivers are significantly affected by loss of catchment forest cover and introductions of tilapia (Oreochromis spp.). On average, stream networks with established Oreochromis spp. populations have 11 fewer species of native fish than do intact systems. The fish that disappear are mostly eleotrid and gobiid taxa, which have important dietary and economic value. 3.Based on the strong links between catchment land clearing, non-native species introductions and loss of migratory pathways for freshwater fish, spatial information was compiled on a national scale to identify priority areas for conservation in Fiji with intact connectivity between forests, hydrologic networks and coral reefs. Areas with high connectivity included remote, largely undeveloped regions of Vanua Levu (Kubulau, Wainunu, Dama, Udu Point, Natewa, Qelewara) and Taveuni, as well as smaller mapping units (Naikorokoro, Sawakasa) of Viti Levu with low density of roads and high relative amounts of mangroves and reefs. 4.These priority areas for conservation can only be effectively protected and managed through cross-sectoral collaboration and ecosystem-based approaches. Copyright © 2009 John Wiley & Sons, Ltd. [source]