Home About us Contact | |||
Land Management Decisions (land + management_decision)
Selected AbstractsIntegrating DNA data and traditional taxonomy to streamline biodiversity assessment: an example from edaphic beetles in the Klamath ecoregion, California, USADIVERSITY AND DISTRIBUTIONS, Issue 5 2006Ryan M. Caesar ABSTRACT Conservation and land management decisions may be misguided by inaccurate or misinterpreted knowledge of biodiversity. Non-systematists often lack taxonomic expertise necessary for an accurate assessment of biodiversity. Additionally, there are far too few taxonomists to contribute significantly to the task of identifying species for specimens collected in biodiversity studies. While species level identification is desirable for making informed management decisions concerning biodiversity, little progress has been made to reduce this taxonomic deficiency. Involvement of non-systematists in the identification process could hasten species identification. Incorporation of DNA sequence data has been recognized as one way to enhance biodiversity assessment and species identification. DNA data are now technologically and economically feasible for most scientists to apply in biodiversity studies. However, its use is not widespread and means of its application has not been extensively addressed. This paper illustrates how such data can be used to hasten biodiversity assessment of species using a little-known group of edaphic beetles. Partial mitochondrial cytochrome oxidase I was sequenced for 171 individuals of feather-wing beetles (Coleoptera: Ptiliidae) from the Klamath ecoregion, which is part of a biodiversity hotspot, the California Floristic Province. A phylogram of these data was reconstructed via parsimony and the strict consensus of 28,000 equally parsimonious trees was well resolved except for peripheral nodes. Forty-two voucher specimens were selected for further identification from clades that were associated with many synonymous and non-synonymous nucleotide changes. A ptiliid taxonomic expert identified nine species that corresponded to monophyletic groups. These results allowed for a more accurate assessment of ptiliid species diversity in the Klamath ecoregion. In addition, we found that the number of amino acid changes or percentage nucleotide difference did not associate with species limits. This study demonstrates that the complementary use of taxonomic expertise and molecular data can improve both the speed and the accuracy of species-level biodiversity assessment. We believe this represents a means for non-systematists to collaborate directly with taxonomists in species identification and represents an improvement over methods that rely solely on parataxonomy or sequence data. [source] Evaluating reserves for species richness and representation in northern CaliforniaDIVERSITY AND DISTRIBUTIONS, Issue 4 2006Jeffrey R. Dunk ABSTRACT The Klamath-Siskiyou forests of northern California and southern Oregon are recognized as an area of globally outstanding biological distinctiveness. When evaluated at a national or global level, this region is often, necessarily, considered to be uniformly diverse. Due to large variation in biotic and abiotic variables throughout this region, however, it is unlikely that biological diversity is uniformly distributed. Furthermore, land management decisions nearly always occur at spatial scales smaller than this entire region. Therefore, we used field data from a random sampling design to map the distribution of local and regional richness of terrestrial molluscs and salamanders within northern California's portion of the Klamath-Siskiyou region. We also evaluated the protection afforded by reserves established for varying reasons (e.g. for inspiration and recreation for people vs. species conservation) to hotspots of species richness and species representation of these taxa. No existing reserves were created with these taxa in mind, yet it was assumed that reserves established largely around considerations for the northern spotted owl (Strix occidentalis caurina) would afford adequate protection for many lesser-known species. Species of terrestrial molluscs and salamanders share two general features: (1) they have extremely low vagility, and (2) they are often associated with moist, cool microclimates. Existing reserves disproportionately included areas of hotspots of species richness for both taxa, when hotspots included the richest c. 25% of the area, whereas non-reserved lands contained greater than expected areas with lower species richness. However, when a more strict definition of hotspot was used (i.e. the richest c.10% of areas), local hotspots for both taxa were not disproportionately found in reserves. Reserves set aside largely for human aesthetics and recreation and those set aside for biodiversity both contributed to the protection of areas with high (greatest 25%) species richness. Existing biodiversity reserves represented 68% of mollusc species and 73% of salamander species, corresponding to the 99th and 93rd percentiles, respectively, of species representation achieved by simulating a random distribution of the same total area of reservation. Cumulatively, however, reserves set aside for inspiration and biodiversity represented 83% of mollusc species and 91% of salamander species. The existing reserves provide conservation value for terrestrial molluscs and salamanders. This reserve network, however, should not be considered optimal for either taxa. [source] Non-optimal animal movement in human-altered landscapesFUNCTIONAL ECOLOGY, Issue 6 2007LENORE FAHRIG Summary 1I synthesize the understanding of the relationship between landscape structure and animal movement in human-modified landscapes. 2The variety of landscape structures is first classified into four categories: continuous habitat, patchy habitat with high-quality matrix, patchy habitat with low-quality matrix, and patchy, ephemeral habitat. Using this simplification I group the range of evolved movement parameters into four categories or movement types. I then discuss how these movement types interact with current human-caused landscape changes, and how this often results in non-optimal movement. 3From this synthesis I develop a hypothesis that predicts the relative importance of the different population-level consequences of these non-optimal movements, for the four movement types. 4Populations of species that have inhabited landscapes with high habitat cover or patchy landscapes with low-risk matrix should have evolved low boundary responses and moderate to high movement probabilities. These species are predicted to be highly susceptible to increased movement mortality resulting from habitat loss and reduced matrix quality. 5In contrast, populations of species that evolved in patchy landscapes with high-risk matrix or dynamic patchy landscapes are predicted to be highly susceptible to decreased immigration and colonization success, due to the increasing patch isolation that results from habitat loss. 6Finally, I discuss three implications of this synthesis: (i) ,least cost path' analysis should not be used for land management decisions without data on actual movement paths and movement risks in the landscape; (ii) ,dispersal ability' is not simply an attribute of a species, but varies strongly with landscape structure such that the relative rankings of species' dispersal abilities can change following landscape alteration; and (iii) the assumption that more mobile species are more resilient to human-caused landscape change is not generally true, but depends on the structure of the landscape where the species evolved. [source] The Governance of Rural Land in a Liberalised WorldJOURNAL OF AGRICULTURAL ECONOMICS, Issue 3 2007Ian Hodge Abstract Liberalisation of agricultural policies reduces the influence of policy on land-use decisions, but environmental policy objectives remain. Governance provides an approach that recognises the role of institutions and collective action. The formulation of environmental policy objectives in terms of the provision of public goods raises questions as to the role of economic valuation and as to whether the definition of ,goods' may misdirect policy attention. An alternative approach relates to ecosystem services and sees management issues in terms of ecosystem resilience and the adaptive governance of socio-ecological systems. Governance involves a mix of regulation, markets, government incentives and collective action. Regulation sets the domain within which markets operate and social judgements as to property rights are required as a basis for exchanges. Depending on commodity prices, agri-environment schemes may be required either to reduce agricultural production intensity or to keep land under production. The diffuse nature of the environmental benefits and costs of land uses, the complexity of ecosystems and the need to co-ordinate land management decisions indicate a role for local adaptive co-management of land resources. Governments play a major role in supporting the institutional framework within which this can take place. [source] Interacting effects of management and environmental variability at multiple scales on invasive species distributionsJOURNAL OF APPLIED ECOLOGY, Issue 6 2009Jeffrey M. Diez Summary 1. The distribution and abundance of invasive species can be driven by both environmental variables and land management decisions. However, understanding these relationships can be complicated by interactions between management actions and environmental variability, and differences in scale among these variables. The resulting ,context-dependence' of management actions may be well-appreciated by ecologists and land managers, but can frustrate attempts to apply general management principles. 2. In this study, we quantify the effects of land management and environmental variability at different scales on the occurrence and abundance of Hieracium pilosella, a major agricultural weed in New Zealand. We used a hierarchical study design and analysis to capture relevant scales of variation in management actions and environmental heterogeneity, and test hypotheses about how these factors interact. 3. We show that fertilizing and grazing interact with environmental gradients at the scale of management application (farm paddocks) to influence the establishment and local abundance of H. pilosella. 4. We further show that H. pilosella's relationships with fine-scale abiotic and biotic factors are consistent with expected mechanisms driven by larger-scale management actions. Using data on occurrence and local abundance, we tease apart which factors are important to establishment and subsequent local spread. 5.Synthesis and applications. A major challenge for environmental scientists is to predict how invasive species may respond to ongoing landscape modifications and environmental change. This effort will require approaches to study design and analysis that can accommodate complexities such as interacting management and environmental variables at different scales. Management actions will be more likely to succeed when they explicitly account for variation in environmental context. [source] Contrasting approaches to statistical regression in ecology and economicsJOURNAL OF APPLIED ECOLOGY, Issue 2 2009P. R. Armsworth Summary 1Conservation and natural resource management challenges are as much social problems as biological ones. In recognition of this fact, ecologists and economists work increasingly closely together. We discuss one barrier to effective integration of the two disciplines: put simply, many ecologists and economists approach statistical regression differently. 2Regression techniques provide the most commonly used approach for empirical analyses of land management decisions. Researchers from each discipline attribute differing importance to a range of possibly conflicting design criteria when formulating regression analyses. 3Ecologists commonly attribute greater importance to spatial autocorrelation and parsimony than do economists when designing regressions. Economists often attribute greater importance than ecologists to concerns about endogeneity and conformance with a priori theoretical expectations. 4Synthesis and applications. The differing importance attributed to different design characteristics may reflect a process of cultural drift within each discipline. Greater interdisciplinary collaboration can counteract this process by stimulating the flow of ideas and techniques across disciplinary boundaries. [source] |