Home About us Contact | |||
Laminar Organization (laminar + organization)
Selected AbstractsLaminar organization of the developing lateral olfactory tract revealed by differential expression of cell recognition moleculesTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2004Koichiro Inaki Abstract The projection neurons in the olfactory bulb (mitral and tufted cells) send axons through the lateral olfactory tract (LOT) onto several structures of the olfactory cortex. However, little is known of the molecular and cellular mechanisms underlying establishment of functional connectivity from the bulb to the cortex. Here, we investigated the developmental process of LOT formation by observing expression patterns of cell recognition molecules in embryonic mice. We immunohistochemically identified a dozen molecules expressed in the developing LOT and some of them were localized to subsets of mitral cell axons. Combinatorial immunostaining for these molecules revealed that the developing LOT consists of three laminas: superficial, middle, and deep. Detailed immunohistochemical, in situ hybridization, and 5-bromodeoxyuridine labeling analyses suggested that the laminar organization reflects: 1) the segregated pathways from the accessory and main olfactory bulbs, and 2) the different maturity of mitral cell axons. Mitral cell axons of the accessory olfactory bulb were localized to the deep lamina, segregated from those of the main olfactory bulb. In the main olfactory pathway, axons of mature mitral cells, whose somata is located in the apical sublayer of the mitral cell layer, were localized to the middle lamina within LOT, while those of immature mitral cells that located in the basal sublayer were complementarily localized to the superficial lamina. These results suggest that newly generated immature axons are added to the most superficial lamina of LOT successively, leading to the formation of piled laminas with different maturational stages of the mitral cell axons. J. Comp. Neurol. 479:243,256, 2004. © 2004 Wiley-Liss, Inc. [source] Development of glutamate receptors in auditory neurons from long-term organotypic cultures of the embryonic chick hindbrainEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2009Carmen Diaz Abstract We used long-range organotypic cultures of auditory nuclei in the chick hindbrain to test the development of glutamate receptor activity in auditory neurons growing in a tissue environment that includes early deprivation of peripheral glutamatergic input, subsequent to removal of the otocyst. Cultures started at embryonic day (E)5, and lasted from 6 h to 15 days. Neuronal migration, clustering and axonal extension from the nucleus magnocellularis (NM) to the nucleus laminaris (NL) partially resembled events in vivo. However, the distinctive laminar organization of the NL was not observed. Glutamate receptor (GluR) activity was tested with optical recordings of intracellular Ca2+ in the NM. ,-Amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)/kainate receptors had Ca2+ responses with a time course similar to that in control slices. Peak amplitude, however, was significantly lower. N -methyl- d -aspartate (NMDA)-mediated Ca2+ responses were higher in 2-day cultures (E5 + 2d) than in E7 explant controls, returning later to control values. Metabotropic GluRs did not elicit Ca2+ responses at standard agonist doses. Blocking NMDA or AMPA/kainate receptors with specific antagonists for 10 days in culture did not limit neuronal survival. Blocking metabotropic GluRs resulted in complete neuronal loss. Thus, ionotropic GluRs are not required for NM neuronal survival. However, their activity during development is affected when neurons grow in an in vitro environment that includes prevention of arrival of peripheral glutamatergic input. [source] Topographical and laminar distribution of cortical input to the monkey entorhinal cortexJOURNAL OF ANATOMY, Issue 2 2007A. Mohedano-Moriano Abstract Hippocampal formation plays a prominent role in episodic memory formation and consolidation. It is likely that episodic memory representations are constructed from cortical information that is mostly funnelled through the entorhinal cortex to the hippocampus. The entorhinal cortex returns processed information to the neocortex. Retrograde tracing studies have shown that neocortical afferents to the entorhinal cortex originate almost exclusively in polymodal association cortical areas. However, the use of retrograde studies does not address the question of the laminar and topographical distribution of cortical projections within the entorhinal cortex. We examined material from 60 Macaca fascicularis monkeys in which cortical deposits of either 3H-amino acids or biotinylated dextran-amine as anterograde tracers were made into different cortical areas (the frontal, cingulate, temporal and parietal cortices). The various cortical inputs to the entorhinal cortex present a heterogeneous topographical distribution. Some projections terminate throughout the entorhinal cortex (afferents from medial area 13 and posterior parahippocampal cortex), while others have more limited termination, with emphasis either rostrally (lateral orbitofrontal cortex, agranular insular cortex, anterior cingulate cortex, perirhinal cortex, unimodal visual association cortex), intermediate (upper bank of the superior temporal sulcus, unimodal auditory association cortex) or caudally (parietal and retrosplenial cortices). Many of these inputs overlap, particularly within the rostrolateral portion of the entorhinal cortex. Some projections were directed mainly to superficial layers (I,III) while others were heavier to deep layers (V,VI) although areas of dense projections typically spanned all layers. A primary report will provide a detailed analysis of the regional and laminar organization of these projections. Here we provide a general overview of these projections in relation to the known neuroanatomy of the entorhinal cortex. [source] Laminar organization of the developing lateral olfactory tract revealed by differential expression of cell recognition moleculesTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2004Koichiro Inaki Abstract The projection neurons in the olfactory bulb (mitral and tufted cells) send axons through the lateral olfactory tract (LOT) onto several structures of the olfactory cortex. However, little is known of the molecular and cellular mechanisms underlying establishment of functional connectivity from the bulb to the cortex. Here, we investigated the developmental process of LOT formation by observing expression patterns of cell recognition molecules in embryonic mice. We immunohistochemically identified a dozen molecules expressed in the developing LOT and some of them were localized to subsets of mitral cell axons. Combinatorial immunostaining for these molecules revealed that the developing LOT consists of three laminas: superficial, middle, and deep. Detailed immunohistochemical, in situ hybridization, and 5-bromodeoxyuridine labeling analyses suggested that the laminar organization reflects: 1) the segregated pathways from the accessory and main olfactory bulbs, and 2) the different maturity of mitral cell axons. Mitral cell axons of the accessory olfactory bulb were localized to the deep lamina, segregated from those of the main olfactory bulb. In the main olfactory pathway, axons of mature mitral cells, whose somata is located in the apical sublayer of the mitral cell layer, were localized to the middle lamina within LOT, while those of immature mitral cells that located in the basal sublayer were complementarily localized to the superficial lamina. These results suggest that newly generated immature axons are added to the most superficial lamina of LOT successively, leading to the formation of piled laminas with different maturational stages of the mitral cell axons. J. Comp. Neurol. 479:243,256, 2004. © 2004 Wiley-Liss, Inc. [source] |