Laboratory Animals (laboratory + animals)

Distribution by Scientific Domains


Selected Abstracts


Ethics and Animal Welfare Related to in vivo Pharmacology and Toxicology in Laboratory Animals

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 4 2005
Ove Svendsen
No abstract is available for this article. [source]


Neurophysiological techniques to assess pain in animals

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 5 2006
J. C. MURRELL
Neurophysiological techniques are widely applied to animals, both in the search as a monitor for adequacy of anaesthesia, and studies to assess the efficacy of analgesic agents. Laboratory animals have been extensively used in models to investigate pain in man. However a substantial number of studies have also used neurophysiological techniques to increase knowledge of pain in specific animal species, with the aim of improving animal welfare. This review provides an overview of neurophysiological techniques involving the brain that have been used in the assessment of pain in animals. An explanation of the methodology of EEG recording, with particular emphasis on veterinary studies, is given. Neurophysiological models developed to assess pain in different species are described, and their relevance to advancements in animal welfare or best clinical practice indicated. [source]


Valproic acid-induced congenital malformations: Clinical and experimental observations

CONGENITAL ANOMALIES, Issue 4 2000
R. Padmanabhan
ABSTRACT With a large number of epileptic women being in the childbearing age group, complications of pregnancy in epileptic patients are of concern. Epileptic women are treated with antiepileptic drugs (AED) whether they are pregnant or not. Contrary to prevailing opinion, recent data suggest that epilepsy per se contributes significantly to birth defects possibly because of the same genetic susceptibility that predisposes to epilepsy. Many of these defects closely resemble those attributed to exposure to AED. The syndromes attributed to various AED also considerably overlap with each other. Valproic acid (VPA) induces several minor and major malformations. The relative risk for spina bifida in VPA exposed pregnancies is nearly 20 times higher than that for the general population and about 10 times higher than that attributed to other anticonvulsants. Fetuses of experimental animals treated with VPA during pregnancy exhibit exencephaly unlike the human offspring in whom VPA induces spina bifida. The cranial and spinal malformations observed in humans and laboratory animals indicate that VPA has a preferentially deleterious effect on the neural crest. Several AEDs including VPA tend to lower maternal plasma folate levels. In view of the beneficial effects of periconceptional folate supplementation in prevention of neural tube defects (NTD), future research should be directed at the role of folate in the possible alleviation of VPA-induced NTD. It is also necessary to continue prospective studies to monitor the old and new AED prescribed and to evaluate the role of interactions between drugs used in combinations. [source]


Neurulation in the human embryo revisited

CONGENITAL ANOMALIES, Issue 2 2000
Tomoko Nakatsu
ABSTRACT It used to be widely accepted that neural tube closure in the human initiates at the level of the future neck and proceeds both cranially and caudally like zip fastener closing. This continuous closure model was recently challenged, and observation of human embryos at the neurulation stage revealed that the closure of the human neural tube initiates at multiple sites. Multi-site closure of the neural tube has been observed in many other animal species, but the initiation sites and the process of neural tube closure are variable among species. Therefore we should be careful when extrapolating the data of normal and abnormal neurulation in laboratory animals to the human. Recent studies in mouse genetics and developmental biology have shown that neural tube defects are quite heterogeneous both etiologically and pathogenetically. Gene mutations responsible for human neural tube defects are largely unknown, but molecular studies of human cases of neural tube defects and their comparison with the mouse genome data should provide a molecular basis for human neural tube defects. [source]


Comparative psychology is still alive but may be losing relevance

DEVELOPMENTAL PSYCHOBIOLOGY, Issue 1 2004
Victor H. Denenberg
Abstract Greenberg et al., in their perspective on the current state and fate of comparative psychology, present convincing data that the field is viable and that comparative psychologists are making important contributions to the research literature. The central feature of the field is its emphasis upon evolution. This is also its weakness since advances in genetic techniques permit researchers to create laboratory animals that have no counterpart in the natural world, and thus have no evolutionary history. These "unnatural" animals are widely used in behavioral, biological, and medical studies, but the findings cannot be interpreted within a comparative psychology framework. As the use of these preparations expand, the relevance of comparative psychology diminishes. © 2003 Wiley Periodicals, Inc. Dev Psychobiol 44: 21,25, 2004. [source]


MDMA, methamphetamine and their combination: possible lessons for party drug users from recent preclinical research

DRUG AND ALCOHOL REVIEW, Issue 1 2007
KELLY J. CLEMENS
Abstract The substituted amphetamines 3,4-methylenedioxymethamphetamine (MDMA, ,Ecstasy') and methamphetamine (METH, ,ice', ,speed') are increasingly popular drugs amongst party-drug users. Studies with humans have investigated the acute and possible long-term adverse effects of these drugs, yet outcomes of such studies are often ambiguous due to a variety of confounding factors. Studies employing animal models have value in determining the acute and long-term effects of MDMA and METH on brain and behaviour. Self-administration studies show that intravenous METH is a particularly potent reinforcer in rats and other species. In contrast, MDMA appears to have powerful effects in enhancing social behaviour in laboratory animals. Brief exposure to MDMA or METH may produce long-term reductions in dopamine, serotonin and noradrenaline in the brain and alterations in the density of various receptor and transporter proteins. However it is still unclear, particularly in the case of MDMA, whether this reflects a ,neurotoxic' effect of the drug. Lasting alterations in social behaviour, anxiety, depressive symptoms and memory have been demonstrated in laboratory rats given MDMA or METH and this matches long-term changes reported in some human studies. Recent laboratory studies suggest that MDMA/METH combinations may produce greater adverse neurochemical and behavioural effects than either drug alone. This is of some concern given recent evidence that party drug users may be frequently exposed to this combination of drugs. [source]


Tobacco smoke carcinogens and breast cancer

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2-3 2002
Stephen S. Hecht
Abstract Cigarette smoking is an established cause of a variety of cancer types, but its role in breast cancer etiology is not clear. In this report, the potential role of cigarette smoke carcinogens as causes of human breast cancer is evaluated. Of over 60 known carcinogens in tobacco smoke, several are known to induce mammary tumors in laboratory animals: benzo[a]pyrene (B[a]P), dibenzo[a,l]pyrene (DB[a,l]P), 2-toluidine, 4-aminobiphenyl, 2-amino-3-methylimidazo[4,5- f]quinoline (IQ), 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP), 1,3-butadiene, isoprene, nitromethane, ethylene oxide, and benzene. Studies in humans demonstrate that tobacco constituents can reach breast tissue. The uptake and metabolic activation of mammary carcinogens such as polycyclic aromatic hydrocarbons (PAHs) and 4-aminobiphenyl are frequently higher in smokers than in nonsmokers. Although it is likely that specific mammary carcinogens in tobacco smoke can reach breast tissue, evidence is lacking at the present time. Some PAHs present in cigarette smoke can be metabolized to sterically hindered diol epoxides, which are potent mammary carcinogens. Thus, compounds such as benzo[c]phenanthrene (B[c]P), not classically considered to be a strong carcinogen in rodents, could nevertheless be metabolized in humans to diol epoxides carcinogenic to the breast. Collectively, the link between smoking and breast cancer is plausible but has been difficult to establish, probably because of the low carcinogen dose. Environ. Mol. Mutagen. 39:119,126, 2002. © 2002 Wiley-Liss, Inc. [source]


Hepatic microsomal cytochrome P450 enzyme activity in relation to in vitro metabolism/inhibition of polychlorinated biphenyls and testosterone in Baltic grey seal (Halichoerus grypus)

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2003
Hongxia Li
Abstract Among other factors, cytochrome P450 (CYP) enzyme activity determines polychlorinated biphenyl (PCB) bioaccu-mulation, biotransformation, and toxicity in exposed species. We measured the oxidative metabolism in vitro of 12 PCB congeners, representing structural groups based on the number and position of the chlorine atoms, by the hepatic microsomes of one Baltic grey seal (Halichoerus grypus). Microsomal metabolism was observed for several PCBs with vicinal H atoms exclusively in the ortho and meta positions and without any ortho -Cl substituents (CB-15 [4,4,-Cl2] and CB-77 [3,3,,4,4,-Cl4]), vicinal meta and para -H atoms (CB-52 [2,2,,5,5,-Cl4], and ,101 [2,2,,4,5,5,-Cl5]) or with both characteristics in combination with either only one ortho -Cl (CB-26 [2,3,,5-Cl3], CB-31 [2,4,,5-Cl3]) or two ortho -Cl substituents (CB-44 [2,2,,3,5,-Cl4]). To allocate PCB biotransformation to specific CYPs, the inhibitive effect of compounds with known CYP-specific inhibition properties was assessed on in vitro PCB metabolism and on regio- and stereospecific testosterone hydroxylase activities. Metabolic inhibition was considered relevant at concentrations ,1.0 ,M because these inhibitors became decreasingly selective at higher concentrations. At <1.0 ,M, ellipticine (CYP1A1/2 inhibitor) selectively inhibited CB-15, ,26, ,31, and ,77 metabolism, with no significant inhibition of CB-44, ,52, and ,101 metabolism. Inhibition of CB-52 and ,101 metabolism by chloramphenicol (CYP2B inhibitor) started at 1.0 ,M and maximized at about 100% at 10 ,M. Ketoconazole (CYP3A inhibitor) appeared to selectively inhibit CB-26, ,31, and ,44 metabolism relative to CB-15, ,77, and ,52 at concentrations ,1.0 ,M. Major testosterone metabolites formed in vitro were 2,-(CYP3A), 6,- (CYP3A, CYP1A), and 16,- (CYP2B) hydroxytestosterone and androstenedione (CYP2B, CYP2C11). The CYP forms indicated are associated with the specific metabolism of testosterone in laboratory animals. Inhibition of 2,- and 6,-hydroxytestosterone formation at ellipticine and ketoconazole concentrations ,1.0,M suggested that both inhibitors were good substrates of CYP3A-like enzymes in grey seal. Chloramphenicol (model for CYP2B) is apparently not a good inhibitor of CYP1A and CYP3A activities in grey seal because the chemical did not inhibit any metabolic route of testosterone at concentrations from 0.1 to 10 ,M. Our findings demonstrated that at least CYP1A- and CYP3A-like enzymes in the liver of grey seals are capable of metabolizing PCBs with ortho - meta and/or meta - para vicinal hydrogens. A CYP2B form might also be involved, but this could not be proven by the results of our experiments. Defining the profiles of CYP enzymes that are responsible for PCB biotransformation is necessary to fully understand the bioaccumulation, toxicokinetics, and risk of PCB exposure in seals and other free-ranging marine mammals. [source]


Neurotoxicity of methylenedioxyamphetamines (MDMA; ecstasy) in humans: how strong is the evidence for persistent brain damage?

ADDICTION, Issue 3 2006
E. Gouzoulis-Mayfrank
ABSTRACT Background The popular dance drug ecstasy (3,4-methylenedioxymethamphetamine: MDMA and some analogues) causes selective and persistent neurotoxic damage of central serotonergic neurones in laboratory animals. Serotonin plays a role in numerous functional systems in the central nervous system (CNS). Consequently, various abnormalities including psychiatric, vegetative, neuroendocrine and cognitive disorders could be expected in humans following MDMA-induced neurotoxic brain damage. Aims In recent years, the question of ecstasy-induced neurotoxicity and possible functional sequelae has been addressed in several studies with drug users. The aim of this paper was to review this literature and weigh the strength of the evidence for persistent brain damage in ecstasy users. Methods We used Medline to view all available publications on ,ecstasy' or ,MDMA'. All available studies dealing with ecstasy users entered this analysis. Findings and conclusions Despite large methodological problems the bulk of evidence suggests residual alterations of serotonergic transmission in MDMA users, although at least partial restitution may occur after long-term abstinence. However, functional sequelae may persist even after longer periods of abstinence. To date, the most consistent findings associate subtle cognitive, particularly memory, impairments with heavy ecstasy use. However, the evidence cannot be considered definite and the issues of possible pre-existing traits or the effects of polydrug use are not resolved. Recommendations Questions about the neurotoxic effects of ecstasy on the brain remain highly topical in light of its popularity among young people. More longitudinal and prospective studies are clearly needed in order to obtain a better understanding of the possible long-term sequelae of ecstasy use in humans. [source]


Possible mechanisms for the anticonvulsant activity of fructose-1,6-diphosphate

EPILEPSIA, Issue 2008
Janet L. Stringer
Summary Fructose-1,6-diphosphate (FDP), an intracellular metabolite of glucose, has anticonvulsant activity in several models of acute seizures in laboratory animals. The anticonvulsant effect of FDP is most likely due to a direct effect since intraperitoneal and oral administration results in significant increases in brain levels. A number of mechanisms have been proposed for this action of FDP. One possibility is that peripheral administration of FDP results in changes in brain metabolism that are anticonvulsant. Glucose can be metabolized through the glycolytic or pentose phosphate pathway. There is evidence that the pentose phosphate pathway is more active in the brain than in other tissues, and that, in the presence of elevated levels of FDP, the majority of glucose is metabolized by the pentose phosphate pathway. The pentose phosphate pathway generates NADPH, which is used to reduce glutathione. The reduced form of endogenous glutathione has been shown to have anticonvulsant activity. Taken together, the data suggest a hypothesis that exogenously administered FDP gets into the brain and astrocytes where it increases the flux of glucose through the pentose phosphate pathway, generating additional NADPH for the reduction of glutathione. [source]


The Influence of Gonadal Hormones on Neuronal Excitability, Seizures, and Epilepsy in the Female

EPILEPSIA, Issue 9 2006
Helen E. Scharfman
Summary:, It is clear from both clinical observations of women, and research in laboratory animals, that gonadal hormones exert a profound influence on neuronal excitability, seizures, and epilepsy. These studies have led to a focus on two of the primary ovarian steroid hormones, estrogen and progesterone, to clarify how gonadal hormones influence seizures in women with epilepsy. The prevailing view is that estrogen is proconvulsant, whereas progesterone is anticonvulsant. However, estrogen and progesterone may not be the only reproductive hormones to consider in evaluating excitability, seizures, or epilepsy in the female. It seems unlikely that estrogen and progesterone would exert single, uniform actions given our current understanding of their complex pharmacological and physiological relationships. Their modulatory effects are likely to depend on endocrine state, relative concentration, metabolism, and many other factors. Despite the challenges these issues raise to future research, some recent advances have helped clarify past confusion in the literature. In addition, testable hypotheses have developed for complex clinical problems such as "catamenial epilepsy." Clinical and animal research, designed with the relevant endocrinological and neurobiological issues in mind, will help advance this field in the future. [source]


Experimental and Clinical Evidence for Loss of Effect (Tolerance) during Prolonged Treatment with Antiepileptic Drugs

EPILEPSIA, Issue 8 2006
Wolfgang Löscher
Summary:, Development of tolerance (i.e., the reduction in response to a drug after repeated administration) is an adaptive response of the body to prolonged exposure to the drug, and tolerance to antiepileptic drugs (AEDs) is no exception. Tolerance develops to some drug effects much more rapidly than to others. The extent of tolerance depends on the drug and individual (genetic?) factors. Tolerance may lead to attenuation of side effects but also to loss of efficacy of AEDs and is reversible after discontinuation of drug treatment. Different experimental approaches are used to study tolerance in laboratory animals. Development of tolerance depends on the experimental model, drug, drug dosage, and duration of treatment, so that a battery of experimental protocols is needed to evaluate fully whether tolerance to effect occurs. Two major types of tolerance are known. Pharmacokinetic (metabolic) tolerance, due to induction of AED-metabolizing enzymes has been shown for most first-generation AEDs, and is easy to overcome by increasing dosage. Pharmacodynamic (functional) tolerance is due to "adaptation" of AED targets (e.g., by loss of receptor sensitivity) and has been shown experimentally for all AEDs that lose activity during prolonged treatment. Functional tolerance may lead to complete loss of AED activity and cross-tolerance to other AEDs. Convincing experimental evidence indicates that almost all first-, second-, and third-generation AEDs lose their antiepileptic activity during prolonged treatment, although to a different extent. Because of diverse confounding factors, detecting tolerance in patients with epilepsy is more difficult but can be done with careful assessment of decline during long-term individual patient response. After excluding confounding factors, tolerance to antiepileptic effect for most modern and old AEDs can be shown in small subgroups of responders by assessing individual or group response. Development of tolerance to the antiepileptic activity of an AED may be an important reason for failure of drug treatment. Knowledge of tolerance to AED effects as a mechanism of drug resistance in previous responders is important for patients, physicians, and scientists. [source]


REVIEW: Behavioral evidence for the significance of serotoninergic (5-HT) receptors in cocaine addiction

ADDICTION BIOLOGY, Issue 3 2010
gorzata Filip
ABSTRACT Cocaine addiction has somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Presently, there is no medication approved for the treatment of cocaine addiction. In recent years, data from the literature (pre-clinical studies and clinical trials) have provided several lines of evidence that serotonin (5-HT) and 5-HT receptors play a modulatory role in the mechanisms of action of cocaine. Here we review the contribution of 5-HT receptor subtypes to cocaine sensitization, discrimination, conditioned place preference, self-administration, reinstatement of seeking behavior and withdrawal symptoms in laboratory animals. Additionally, the consequences of chronic cocaine exposure on particular 5-HT receptor-assigned functions in pre-clinical studies are presented. [source]


REVIEW: Human and laboratory rodent low response to alcohol: is better consilience possible?

ADDICTION BIOLOGY, Issue 2 2010
John C. Crabbe
ABSTRACT If people are brought into the laboratory and given alcohol, there are pronounced differences among individuals in many responses to the drug. Some participants in alcohol challenge protocols show a cluster of ,low level of responses to alcohol' determined by observing post-drinking-related changes in subjective, motor and physiological effects at a given dose level. Those individuals characterized as having low level of response (LR) to alcohol have been shown to be at increased risk for a lifetime diagnosis of alcohol dependence (AD), and this relationship between low LR and AD appears to be in part genetic. LR to alcohol is an area where achieving greater consilience between the human and the rodent phenotypes would seem to be highly likely. However, despite extensive data from both human and rodent studies, few attempts have been made to evaluate the human and animal data systematically in order to understand which aspects of LR appear to be most directly comparable across species and thus the most promising for further study. We review four general aspects of LR that could be compared between humans and laboratory animals: (1) behavioral measures of subjective intoxication; (2) body sway; (3) endocrine responses; and (4) stimulant, autonomic and electrophysiological responses. None of these aspects of LR provide completely face-valid direct comparisons across species. Nevertheless, one of the most replicated findings in humans is the low subjective response, but, as it may reflect either aversively valenced and/or positively valenced responses to alcohol as usually assessed, it is unclear which rodent responses are analogous. Stimulated heart rate appears to be consistent in animal and human studies, although at-risk subjects appear to be more rather than less sensitive to alcohol using this measure. The hormone and electrophysiological data offer strong possibilities of understanding the neurobiological mechanisms, but the rodent data in particular are rather sparse and unsystematic. Therefore, we suggest that more effort is still needed to collect data using refined measures designed to be more directly comparable in humans and animals. Additionally, the genetically mediated mechanisms underlying this endophenotype need to be characterized further across species. [source]


REVIEW: Behavioural assessment of drug reinforcement and addictive features in rodents: an overview

ADDICTION BIOLOGY, Issue 1 2006
Carles Sanchis-Segura
ABSTRACT Some psychoactive drugs are abused because of their ability to act as reinforcers. As a consequence behavioural patterns (such as drug-seeking/drug-taking behaviours) are promoted that ensure further drug consumption. After prolonged drug self-administration, some individuals lose control over their behaviour so that these drug-seeking/taking behaviours become compulsive, pervading almost all life activities and precipitating the loss of social compatibility. Thus, the syndrome of addictive behaviour is qualitatively different from controlled drug consumption. Drug-induced reinforcement can be assessed directly in laboratory animals by either operant or non-operant self-administration methods, by classical conditioning-based paradigms such as conditioned place preference or sign tracking, by facilitation of intracranial electric self-stimulation, or, alternatively by drug-induced memory enhancement. In contrast, addiction cannot be modelled in animals, at least as a whole, within the constraints of the laboratory. However, various procedures have been proposed as possible rodent analogues of addiction's major elements including compulsive drug seeking, relapse, loss of control/impulsivity, and continued drug consumption despite negative consequences. This review provides an extensive overview and a critical evaluation of the methods currently used for studying drug-induced reinforcement as well as specific features of addictive behaviour. In addition, comic strips that illustrate behavioural methods used in the drug abuse field are provided given for free download under http://www.zi-mannheim/psychopharmacology.de [source]


Effect of a dose of ethanol on acute tolerance and ethanol consumption in alcohol drinker(UChB) and non-drinker (UChA) rats

ADDICTION BIOLOGY, Issue 3 2002
Lutske Tampier
Acute tolerance that develops within minutes of ethanol exposure appears to influence the apparent acute behavioral sensitivity of laboratory animals to ethanol actions. The existence of a correlation between voluntary ethanol consumption and the speed of acquiring acute tolerance has been proposed. In the present paper we investigated the effect of an acute dose of ethanol on tolerance development and on ethanol voluntary consumption in our two selected bred strains, UChA (low ethanol drinker) and UChB (high ethanol drinker) rats. Acute tolerance developed to motor impairment induced by a dose of ethanol of 2.3 g/kg. administered intraperitoneally was evaluated by the tilting plane test. Voluntary ethanol consumption was compared in rats receiving the ethanol dose, to rats receiving a saline intraperitoneal (i.p.) injection. The results show that UChB rats receiving an intoxicating dose of ethanol develop more tolerance and they significantly increased their ethanol consumption compared to the same line that received a saline injection, while no change in acute tolerance and voluntary ethanol consumption were obtained in UChA rats. In conclusion, a possible mechanism by which UChB rats drink high amounts of ethanol appears to be the development of tolerance to the pharmacological effects of ethanol. [source]


Safety pharmacology in the nonclinical assessment of new medicinal products: definition, place, interest and difficulties

FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 2 2002
Jean-Roger Claude
Until the year 2000 there was no internationally-accepted definition for the terms used in nonclinical pharmacology (primary, secondary pharmacodynamics, discovery, safety pharmacology, etc). Now, after ICH5 (San Diego, November 2000), a harmonisation of the nomenclature is adopted: safety pharmacology is defined as the studies that investigate the potential undesirable pharmacodynamic effects of a medicinal product on physiological functions in relationship to exposure. Consequently, safety pharmacology studies are a part of the safety assessment for a new product, in the same way than toxicological studies, and a basic battery of tests (core battery) has to be conducted prior to the first administration to humans. Safety pharmacology studies are of peculiar interest: they show a good predictive potential for humans, they do not require a large number of laboratory animals, long-term studies, large amount of products and they are more dynamic and more flexible than toxicological studies. Nevertheless, many difficulties occur for the implementation in industry, related to practical and/or scientific problems: location of the studies, routine activity for the pharmacologists, sometimes difficulties in the relationship between toxicologists and pharmacologists, adaptation to the GLP requirements, elaboration of an early relevant scientific programme, necessity to go to contract-labs or to academic research for unusual or for up to date methods, etc. To conclude, a retrospective timetable of the regulatory evolution for the last 10 years will be provided, as an illustration of the worldwide progress in the concept of `harmonisation' for the assessment of new medicinal products. [source]


Immunoblot Analysis as an Alternative Method to Diagnose Enterohepatic Helicobacter Infections

HELICOBACTER, Issue 3 2009
Torkel Wadström
Abstract Introduction: Enterohepatic Helicobacter species have been associated with chronic infections of the hepatobiliary tract and lower bowel in naturally and experimentally infected mice, Helicobacter -infected animals should thus not be used in studies of diseases associated with chronic inflammation. Helicobacter species induce inflammation and modulate host immune responses, thus emphasizing the need to diagnose these infections in laboratory animals. Materials and Methods: An immunoblot assay was developed to analyze antibodies to enterohepatic Helicobacter species in naturally colonized laboratory mouse colonies. We evaluated the serum antibody responses to cell surface proteins of H. bilis, H. hepaticus, and H. ganmani in 188 mouse sera from four different university animal facilities. Lower bowel tissue specimens from 56 of these animals were available and analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and the results compared with matched immunoblot patterns. Results: Specific antibody reactivity to H. bilis was detected in 8 of 186 (4.3%) sera, to H. hepaticus in 45 of 184 (24%) sera, and to H. ganmani in 51 of 188 (27%) of tested sera. These results were compared with PCR-DGGE analyses of tissue samples of corresponding animals, and concordance between the two diagnostic tests was found in 96% for H. bilis, in 91% for H. hepaticus, and in 82% for H. ganmani. The PCR-DGGE also detected DNA of H. typhlonius, H. sp. flexispira, and H. rodentium. Conclusions: Infection with enterohepatic species was common in the laboratory mouse colonies tested, independent of strain and stock. Immunoblot analysis seems to be a promising diagnostic tool to monitor enterohepatic Helicobacter species infections of laboratory rodents. [source]


Methylenedioxymethamphetamine (MDMA, ,Ecstasy'): a stressor on the immune system

IMMUNOLOGY, Issue 4 2004
Thomas J. Connor
Summary Drug abuse is a global problem of considerable concern to health. One such health concern stems from the fact that many drugs of abuse have immunosuppressive actions and consequently have the potential to increase susceptibility to infectious disease. This article is focused on the impact of the amphetamine derivative, methylenedioxymethamphetamine (MDMA; ,Ecstasy') on immunity. Research conducted over the last 5 years, in both laboratory animals and humans, has demonstrated that MDMA has immunosuppressive actions. Specifically, MDMA suppresses neutrophil phagocytosis, suppresses production of the pro-inflammatory cytokines tumour necrosis factor-, (TNF-,) and interleukin (IL)-1,, and increases production of the endogenous immunosuppressive cytokine (IL-10), thereby promoting an immunosuppressive cytokine phenotype. MDMA also suppresses circulating lymphocyte numbers, with CD4+ T cells being particularly affected, and alters T-cell function as indicated by reduced mitogen-stimulated T-cell proliferation, and a skewing of T-cell cytokine production in a T helper 2 (Th2) direction. For the most part, the aforementioned effects of MDMA are not the result of a direct action of the drug on immune cells, but rather caused by the release of endogenous immunomodulatory substances. Consequently, the physiological mechanisms that are thought to underlie the immunosuppressive effects of MDMA will be discussed. As many of the physiological changes elicited by MDMA closely resemble those induced by acute stress, it is suggested that exposure to MDMA could be regarded as a ,chemical stressor' on the immune system. Finally, the potential of MDMA-induced immunosuppression to translate into significant health risks for abusers of the drug will be discussed. [source]


Infancy is not a quiescent period of testicular development

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 1 2001
Héctor E. Chemes
Postnatal evolution of the testis in most laboratory animals is characterized by the close continuity between neonatal activation and pubertal development. In higher primates, infancy, a long period of variable duration, separates birth from the beginning of puberty. This period has been classically considered as a quiescent phase of testicular development, but is actually characterized by intense, yet inapparent activity. Testicular volume increases vigorously shortly after birth and in early infancy due to the growth in length of seminiferous cords. This longitudinal growth results from active proliferation of infantile Sertoli cells which otherwise display a unique array of functional capabilities (oestrogen and anti-müllerian hormone secretion, increase of FSH receptors and maximal response to FSH). Leydig cells also show recrudescence after birth, possibly determined by an active gonadotrophic-testicular axis which results in increased testosterone secretion of uncertain functional role. This postnatal activation slowly subsides during late infancy when periodic phases of activation of the hypothalamo-pituitary-testicular axis are paralleled by incomplete spermatogenic spurts. The beginning of puberty is marked by the simultaneous reawakening of Leydig cell function and succeeding phases of germ cell differentiation/degeneration which ultimately lead to final spermatogenic maturation. The marked testicular growth in this stage is due to progressive increase at seminiferous tubule diameter. Sertoli cells, which have reached mitotic arrest, develop and differentiate, establishing the seminiferous tubule barrier, fluid secretion and lumen formation, and acquiring cyclic morphological and metabolic variations characteristic of the mature stage. All of these modifications indicate that, far from being quiescent, the testis in primates experiences numerous changes during infancy, and that the potential for pubertal development and normal adult fertility depends on the successful completion of these changes. [source]


Genetic Approaches to the Study of Aging

JOURNAL OF AMERICAN GERIATRICS SOCIETY, Issue 9s 2005
Richard A. Miller MD
Can mouse genetics teach us enough about the biology of aging to guide the search for anti-aging medicines that can delay late-life illness? Recent progress gives reason for optimism, with new data showing that changes in single genes can extend average and maximal life span by 40%. Mice with these genetic variants remain healthy, active, and cognitively intact at average ages that correspond to 110,120 years of human life span. Multiple lines of evidence now point to a hormone, IGF-I, as a key influence on life span, with low IGF-I levels associated with extended longevity in multiple model systems. The goal of this research is not gene therapy,we have no idea of what genes to change, how to change them, or what harm such changes might do,but instead to use insights from the cell biology and endocrinology of genetically long-lived mice and other species to help develop drugs that manipulate aging and thus postpone the many diseases and disabilities that are typically troublesome in old age. The complete conquest of cancer or heart disease would each lead to an increase of a mere,3% in mean life span in humans, i.e. about a tenth of what can be accomplished, today, in laboratory animals of delayed aging. In this context the paltry commitment to research in biological gerontology (six cents per $100 of NIH funding, for example) seems worth reconsideration. [source]


A novel approach to assessing percutaneous VX poisoning in the conscious guinea-pig,

JOURNAL OF APPLIED TOXICOLOGY, Issue 5 2008
Helen Mumford
Abstract Nerve agents like VX (S-2-diisopropylaminoethyl-O-ethyl-methylphosphonothiolate) are potent irreversible acetylcholinesterase (AChE) inhibitors. Following percutaneous nerve agent exposure there is a slower rate of absorption, later onset and longer duration of signs of poisoning. Relatively little is known about the physiological effects of percutaneously applied nerve agent in unanaesthetised laboratory animals. Heart rate (ECG), brain electrical activity (EEG), body temperature, locomotor activity and clinical signs were monitored following percutaneous application of VX to conscious guinea-pigs. A fall in heart rate (bradycardia) preceded incapacitation following the highest VX dose, and occurred in the absence of incapacitation at the lower doses. Following the highest dose of VX (0.592 mg kg,1) three out of four animals died within 24 h. The lower two doses of VX (0.296 and 0.148 mg kg,1), produced extended periods of bradycardia in the absence of observable signs of poisoning. Bradycardia preceded, or occurred in the absence of, a temperature decrease; seizure-like EEG changes were not observed at any of the VX doses tested. Acetylcholinesterase activity was significantly inhibited in the blood and most brain areas at 48 h. There were significant dose-related decreases in body weight at 24 and 48 h following VX. This preliminary study suggests that decreased heart rate may be an early sign of the toxic effects of VX, whereas temperature and observable clinical signs are not good early indicators of percutaneous VX poisoning in this animal model. Future studies will use this model to assess the benefit of administering medical countermeasures in response to a defined decrease in heart rate. © Crown Copyright 2007. Reproduced with the permission of the Controller of HMSO. Published by John Wiley & Sons, Ltd. This article was published online on 5 December 2007. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected [30 May 2008]. [source]


Long-term effects of calorie restriction on serum sex-hormone concentrations in men

AGING CELL, Issue 2 2010
Roberto Cangemi
Summary Calorie restriction (CR) slows aging and consistently reduces circulating sex hormones in laboratory animals. However, nothing is known regarding the long-term effects of CR with adequate nutrition on serum sex-hormone concentration in lean healthy humans. In this study, we measured body composition, and serum total testosterone, total 17-,-estradiol, sex hormone,binding globulin (SHBG), and dehydroepiandrosterone sulfate (DHEA-S) concentrations in 24 men (mean age 51.5 ± 13 years), who had been practicing CR with adequate nutrition for an average of 7.4 ± 4.5 years, in 24 age- and body fat,matched endurance runners (EX), and 24 age-matched sedentary controls eating Western diets (WD). We found that both the CR and EX volunteers had significantly lower body fat than the WD volunteers (total body fat, 8.7 ± 4.2%; 10.5 ± 4.4%; 23.2 ± 6.1%, respectively; P = 0.0001). Serum total testosterone and the free androgen index were significantly lower, and SHBG was higher in the CR group than in the EX and WD groups (P , 0.001). Serum 17,-estradiol and the estradiol:SHBG ratio were both significantly lower in the CR and EX groups than in the WD group (P , 0.005). Serum DHEA-S concentrations were not different between the three groups. These findings demonstrate that, as in long-lived CR rodents, long-term severe CR reduces serum total and free testosterone and increases SHBG concentrations in humans, independently of adiposity. More studies are needed to understand the role of this CR-mediated reduction in sex hormones in modulating the pathogenesis of age-associated chronic diseases such as cancer and the aging process itself. [source]


Are mice calorically restricted in nature?

AGING CELL, Issue 4 2003
Steven N. Austad
Summary An important question about traditional caloric restriction (CR) experiments on laboratory mice is how food intake in the laboratory compares with that of wild mice in nature. Such knowledge would allow us to distinguish between two opposing views of the anti-aging effect of CR , whether CR represents, in laboratory animals, a return to a more normal level of food intake, compared with excess food consumption typical of laboratory conditions or whether CR represents restriction below that of animals living in nature, i.e. the conditions under which house mice evolved. To address this issue, we compared energy use of three mouse genotypes: (1) laboratory-selected mouse strains (= laboratory mice), (2) house mice that were four generations or fewer removed from the wild (= wild-derived mice) and (3) mice living in nature (= wild mice). We found, after correcting for body mass, that ad libitum fed laboratory mice eat no more than wild mice. In fact, under demanding natural conditions, wild mice eat even more than ad libitum fed laboratory mice. Laboratory mice do, however, eat more than wild-derived mice housed in similar captive conditions. Therefore, laboratory mice have been selected during the course of domestication for increased food intake compared with captive wild mice, but they are not particularly gluttonous compared with wild mice in nature. We conclude that CR experiments do in fact restrict energy consumption beyond that typically experienced by mice in nature. Therefore, the retarded aging observed with CR is not due to eliminating the detrimental effects of overeating. [source]


Establishing a standardized dental record-keeping system for a small investigational colony of rhesus monkeys (Macaca mulatta)

JOURNAL OF MEDICAL PRIMATOLOGY, Issue 2008
B.W. Gibson
Abstract Background, Dental hygiene is becoming an increasingly important component of quality health care for laboratory animals, especially non-human primates (NHPs). One key to a successful health care program is an effective and efficient record-keeping system. Methods, To standardize a dental hygiene program for a small colony of NHPs, we developed a dental recording chart specific for rhesus monkeys. This dental chart was developed using the modified Triadan system. This system numbers teeth across species according to location. Results, An illustrative case report was presented to demonstrate the accurate record keeping and spatial relationship generated from this Old World NHP dental chart design. Conclusion, The development and implementation of a standardized dental chart, as part of a dental hygiene program will help minimize variables that may affect research data. [source]


Pharmacokinetics of liquiritigenin in mice, rats, rabbits, and dogs, and animal scale-up

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 11 2009
Hee E. Kang
Abstract Pharmacokinetics of liquiritigenin (LQ) and its two glucuronide metabolites, M1 and M2, in mice, rats, rabbits, and dogs and animal scale-up of the pharmacokinetic parameters of LQ were evaluated. After intravenous administration of LQ, the AUC (AUC0,t) values of LQ, M1, and M2 were proportional to LQ doses in all animals studied. Animal scale-up of some pharmacokinetic parameters of LQ was performed based on the parameters after its intravenous administration (20 mg/kg; in the linear pharmacokinetic range) to the four species. Linear relationships were obtained (r,>,0.968) between log CL (or CL/fu) (L/h) and log species body weight (W) (kg) [CL (or CL/fu),=,3.29 (34.0) W0.723 (0.789)] and log,Vss (or Vss/fu) (L) and log,W (kg) [Vss (or Vss/fu),=,0.340 (3.52) W0.882 (0.948)]. Interspecies scale-up of plasma concentration,time data of LQ using apolysichron (complex Dedrick plots) resulted in similar profiles, and plasma concentration,time profile of humans were predicted using the well-fitted four animal data. Our results indicate that the LQ data obtained from laboratory animals could be utilized to generate preliminary estimates of the pharmacokinetic parameters of LQ in humans. These parameters can serve as guidelines for better planning of clinical studies. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4327,4342, 2009 [source]


The pharmacology of radiolabeled cationic antimicrobial peptides

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 5 2008
Carlo P.J.M. Brouwer
Abstract Cationic antimicrobial peptides are good candidates for new diagnostics and antimicrobial agents. They can rapidly kill a broad range of microbes and have additional activities that have impact on the quality and effectiveness of innate responses and inflammation. Furthermore, the challenge of bacterial resistance to conventional antibiotics and the unique mode of action of antimicrobial peptides have made such peptides promising candidates for the development of a new class of antibiotics. This review focuses on antimicrobial peptides as a topic for molecular imaging, infection detection, treatment monitoring and additionally, displaying microbicidal activities. A scintigraphic approach to studying the pharmacokinetics of antimicrobial peptides in laboratory animals has been developed. The peptides were labeled with technetium-99m and, after intravenous injection into laboratory animals, scintigraphy allowed real-time, whole body imaging and quantitative biodistribution studies of delivery of the peptides to the various body compartments. Antimicrobial peptides rapidly accumulated at sites of infection but not at sites of sterile inflammation, indicating that radiolabeled cationic antimicrobial peptides could be used for the detection of infected sites. As the number of viable micro-organisms determines the rate of accumulation of these peptides, radiolabeled antimicrobial peptides enabled to determine the efficacy of antibacterial therapy in animals to be monitored as well to quantify the delivery of antimicrobial peptides to the site of infection. The scintigraphic approach provides to be a reliable method for investigating the pharmacokinetics of small cationic antimicrobial peptides in animals and offers perspective for diagnosis of infections, monitoring antimicrobial therapy, and most important, alternative antimicrobial treatment infections with multi-drug resistant micro-organisms in humans. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci [source]


Laboratory Models Available to Study Alcohol-Induced Organ Damage and Immune Variations: Choosing the Appropriate Model

ALCOHOLISM, Issue 9 2010
Nympha B. D'Souza El-Guindy
The morbidity and mortality resulting from alcohol-related diseases globally impose a substantive cost to society. To minimize the financial burden on society and improve the quality of life for individuals suffering from the ill effects of alcohol abuse, substantial research in the alcohol field is focused on understanding the mechanisms by which alcohol-related diseases develop and progress. Since ethical concerns and inherent difficulties limit the amount of alcohol abuse research that can be performed in humans, most studies are performed in laboratory animals. This article summarizes the various laboratory models of alcohol abuse that are currently available and are used to study the mechanisms by which alcohol abuse induces organ damage and immune defects. The strengths and weaknesses of each of the models are discussed. Integrated into the review are the presentations that were made in the symposium "Methods of Ethanol Application in Alcohol Model,How Long is Long Enough" at the joint 2008 Research Society on Alcoholism (RSA) and International Society for Biomedical Research on Alcoholism (ISBRA) meeting, Washington, DC, emphasizing the importance not only of selecting the most appropriate laboratory alcohol model to address the specific goals of a project but also of ensuring that the findings can be extrapolated to alcohol-induced diseases in humans. [source]


Neuropeptide S Receptor Gene Expression in Alcohol Withdrawal and Protracted Abstinence in Postdependent Rats

ALCOHOLISM, Issue 1 2010
Barbara Ruggeri
Background:, Alcoholism is a chronic disease characterized by frequent intoxications followed by withdrawal episodes and relapse to alcohol use. Neuroplastic changes associated with these intoxication and withdrawal cycles are thought to play a key role in disease progression. Recently, it has been shown that neuropeptide S (NPS), a newly deorphanized neuropeptide receptor system, facilitates relapse to alcohol seeking in laboratory animals. Given that a history of ethanol intoxication may increase vulnerability to alcohol addiction, we sought to determine whether NPS receptor (NPSR) gene expression is altered during withdrawal. Methods:, Rats were subjected to 1 week of intoxication by oral alcohol administration. NPSR gene expression was analyzed by in situ hybridization in rats 12 hours and 7 days after the last alcohol administration. To investigate the functional significance of NPSR system adaptation following protracted withdrawal 7 days after intoxication, we tested the anxiolytic-like properties of NPS in nondependent and postdependent rats using the shock probe defensive burying test (DB). Results:, At both time points, increased NPSR gene expression was observed in several brain areas, including the endopiriform nucleus, the motor cortex, and the medial amygdaloid nucleus. Moderate increases in gene expression were also found in the lateral hypothalamus, paraventricular nucleus, basolateral and central amygdala. Differences from control animals were more pronounced after 7 days of abstinence. The upregulation of the NPSR system at this time point was confirmed by functional data indicating that intracerebroventricular (ICV) NPS administration (0.0, 0.3, and 0.1 nmol/rat) elicits more pronounced anxiolytic effects in postdependent animals than in controls subjected to the electric shock probe DB test. Conclusions:, Neuropeptide S receptor mRNA expression is increased in different brain areas of postdependent rats; as shown in the DB test, this expression change is functionally relevant. [source]


Effects of Stress and Alcohol on Subjective State in Humans

ALCOHOLISM, Issue 6 2002
Anna H. V. Söderpalm
Background: There is increasing evidence that stress and hypothalamic-pituitary-adrenal axis activation interact with drugs of abuse and influence drug-taking behaviors. Both studies with laboratory animals and survey data with alcohol users suggest that acute or chronic stressful events increase alcohol intake. One mechanism for the increase in alcohol intake may be that stress alters the subjective effects produced by the drug in ways that enhance the reinforcing properties of alcohol. Therefore, in this study we determined whether an acute social stressor alters subjective responses to ethanol in humans. The stressor was a modified version of the Trier Social Stress Test, an arithmetic task that increases cortisol levels. Methods: Twenty male volunteers participated in two laboratory sessions, in which they performed the Trier Social Stress Test on one session and no task on the other session, immediately before consuming a beverage that contained ethanol (0.8 g/kg in juice) or placebo (juice alone). Eleven subjects received ethanol on both sessions, and nine subjects received placebo on both sessions. Primary dependent measures were self-report questionnaires of mood states. Salivary levels of cortisol were obtained to confirm the effectiveness of the stress procedure. Results: Stress alone produced stimulant-like subjective effects. In the group who received ethanol, stress increased sedative-like effects and decreased stimulant-like effects. Conclusions: At this relatively high dose of ethanol, stress increased sedative effects of alcohol and did not increase desire for more alcohol. It is possible that in some individuals, the increased sedative effects after stress may increase the likelihood of consuming more alcohol. The effects of stress on consumption at this, or lower, doses of alcohol remain to be determined. [source]