Layer Interface (layer + interface)

Distribution by Scientific Domains


Selected Abstracts


2-D/3-D multiply transmitted, converted and reflected arrivals in complex layered media with the modified shortest path method

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2009
Chao-Ying Bai
SUMMARY Grid-cell based schemes for tracing seismic arrivals, such as the finite difference eikonal equation solver or the shortest path method (SPM), are conventionally confined to locating first arrivals only. However, later arrivals are numerous and sometimes of greater amplitude than the first arrivals, making them valuable information, with the potential to be used for precise earthquake location, high-resolution seismic tomography, real-time automatic onset picking and identification of multiple events on seismic exploration data. The purpose of this study is to introduce a modified SPM (MSPM) for tracking multiple arrivals comprising any kind of combination of transmissions, conversions and reflections in complex 2-D/3-D layered media. A practical approach known as the multistage scheme is incorporated into the MSPM to propagate seismic wave fronts from one interface (or subsurface structure for 3-D application) to the next. By treating each layer that the wave front enters as an independent computational domain, one obtains a transmitted and/or converted branch of later arrivals by reinitializing it in the adjacent layer, and a reflected and/or converted branch of later arrivals by reinitializing it in the incident layer. A simple local grid refinement scheme at the layer interface is used to maintain the same accuracy as in the one-stage MSPM application in tracing first arrivals. Benchmark tests against the multistage fast marching method are undertaken to assess the solution accuracy and the computational efficiency. Several examples are presented that demonstrate the viability of the multistage MSPM in highly complex layered media. Even in the presence of velocity variations, such as the Marmousi model, or interfaces exhibiting a relatively high curvature, later arrivals composed of any combination of the transmitted, converted and reflected events are tracked accurately. This is because the multistage MSPM retains the desirable properties of a single-stage MSPM: high computational efficiency and a high accuracy compared with the multistage FMM scheme. [source]


Investigation on the oxidation behaviour of gamma titanium aluminides coated with thermal barrier coatings

MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 7 2008
R. Braun
Abstract In the present study, the applicability of thermal barrier coatings (TBCs) on ,-TiAl alloys was investigated. Two alloys with the chemical compositions of Ti-45Al-8Nb-0.2B-0.15C and Ti-45Al-1Cr-6Nb-0.4W-0.2B-0.5C-0.2Si were used. Before TBC deposition, the specimens were pre-oxidised in laboratory air or low partial pressure oxygen atmosphere. Yttria partially stabilised zirconia top coats were then deposited using electron-beam physical vapour deposition (EB-PVD). The oxidation behaviour of the ,-TiAl specimens with TBC was studied by cyclic oxidation testing in air at 850 and 900,°C. Post-oxidation analysis of the coating systems was performed using scanning electron microscopy with energy-dispersive X-ray spectroscopy (EDS). No spallation of the TBC was observed for pre-oxidised specimens of both alloys when exposed to air at 850,°C for 1100 cycles of 1,h dwell time at high temperature. SEM micrographs of the thermally grown oxide scale revealed outer mixed TiO2/Al2O3 protrusions with a columnar structure. The protrusions contained small particles of zirconia and a low amount of about 0.5 at% zirconium was measured by EDS analysis throughout this outer oxide mixture. The TBCs exhibited excellent adherence on the oxide scale. Intercolumnar gaps and pores in the root area of the TBC were filled with titania and alumina. Below the outer columnar oxide scale, a broad porous zone of predominant titania was observed. The transition region between the oxide scale and substrate consisted of a discontinuous nitride layer intermixed with alumina particles and intermetallic phases rich in niobium formed at the nitride layer/substrate interface. When thermally cycled at 900,°C, the oxide scales on the alloy Ti-45Al-8Nb-0.2B-0.15C pre-oxidised in low partial pressure oxygen spalled off after 540 cycles. For the sample with TBC, spallation was observed after 810 cycles. Failure occurred in the thermally grown oxide near the oxide/nitride layer interface. Microstructural examinations revealed again oxide scales with columnar structure beneath the zirconia top coat and good adherence of the TBC on the thermally grown oxides formed at 900,°C. [source]


Oesophageal morphometry and residual strain in a mouse model of osteogenesis imperfecta

NEUROGASTROENTEROLOGY & MOTILITY, Issue 5 2001
H. Gregersen
Recently, it was demonstrated in the oesophagus that the zero-stress state is not a closed cylinder but an open circular cylindrical sector. The closed cylinder with no external loads applied is called the no-load state and residual strain is the difference in strain between the no-load state and the zero-stress state. To understand the physiology and pathology of the oesophagus, it is necessary to know the zero-stress state and the stress,strain relationships of the tissues in the oesophagus, and the changes of these states and relationships due to biological remodelling of the tissues under stress. The aim of this study was to investigate the morphological and biomechanical remodelling at the no-load and zero-stress states in mutant osteogenesis imperfecta murine (oim) mice with collagen deficiency. The oesophagi of seven oim and seven normal wild-type mice were excised, cleaned, and sectioned into rings in an organ bath containing calcium-free Krebs solution with dextran and EGTA. The rings were photographed in the no-load state and cut radially to obtain the zero-stress state. Equilibrium was awaited for 30 min and the specimens were photographed again. Circumferences, submucosa and muscle layer thicknesses and areas, and the opening angle were measured from the digitized images. The oesophagi in oim mice had smaller layer thicknesses and areas compared to the wild types. The largest reduction in layer thickness in oim mice was found in the submucosa (approximately 36%). Oim mice had significantly larger opening angles (120.2 ± 4.5°) than wild-type mice (93.0 ± 11.2°). The residual strain was compressive at the mucosal surface and tensile at the serosal surface in both oim and wild types. In the oim mice, the residual strains at the serosal and mucosal surfaces and the mucosa-submucosal,muscle layer interface were higher than in the wild types (P < 0.05). The gradient of residual strain per unit thickness was higher in oim mice than in wild-type mice, and was highest in submucosa (P < 0.05). The only morphometric measure that was similar in oim and wild-type mice was the inner circumference in the no-load state. In conclusion, our data show significant differences in the residual strain distribution and morphometry between oim mice and wild-type mice. The data suggest that the residual stress in oesophagus is caused by the tension in the muscle layer rather than the stiffness of the submucosa in compression and that the remodelling process in the oim oesophagus is due mainly to morphometric and biomechanical alterations in the submucosa. [source]


Involutions resulting from annual freeze,thaw cycles: a laboratory simulation based on observations in northeastern Japan

PERMAFROST AND PERIGLACIAL PROCESSES, Issue 4 2007
Yoshiko Ogino
Abstract A pilot laboratory experiment using a reversed two-layer soil model simulated small-scale involutions formed in a seasonal frost environment during the last glacial period. At the modelled site, the interface between the upper aeolian sandy loam and the lower volcanic pumice constitutes small-scale involutions that display upward-extending tapered projections and downward-extending round hollows. Two scale-reduced laboratory models were subjected to three accelerated annual freeze,thaw cycles with monitoring of frost heave, soil temperature, moisture and pressure. Ice segregation near the layer interface induces upheaving of coarse pumice grains on freezing and earlier settlement of mobilised loam on thawing, resulting in deformation of the interface. A reconstructed 3-D interface displays mounds and depressions with a diameter of 15,20,cm and a height increasing with freeze, thaw alternations. The experimental results imply that the repetition of differential heave and soft-loam settlement promotes decimetre-scale involutions in near-saturated soils subject to deep seasonal frost penetration. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Constrained tomography of realistic velocity models in microseismic monitoring using calibration shots

GEOPHYSICAL PROSPECTING, Issue 5 2010
T. Bardainne
ABSTRACT The knowledge of the velocity model in microseismic jobs is critical to achieving statistically reliable microseismic event locations. The design of microseismic networks and the limited sources for calibration do not allow for a full tomographic inversion. We propose optimizing a priori velocity models using a few active shots and a non-linear inversion, suitable to poorly constrained systems. The considered models can be described by several layers with different P- and S-wave velocities. The velocities may be constant or have 3D gradients; the layer interfaces may be simple dipping planes or more complex 3D surfaces. In this process the P- and S- wave arrival times and polarizations measured on the seismograms constitute the observed data set. They are used to estimate two misfit functions: i) one based on the measurement residuals and ii) one based on the inaccuracy of the source relocation. These two functions are minimized thanks to a simulated annealing scheme, which decreases the risk of converging to a local solution within the velocity model. The case study used to illustrate this methodology highlights the ability of this technique to constrain a velocity model with dipping layers. This was performed by jointly using sixteen perforation shots recorded during a multi-stage fracturing operation from a single string of 3C-receivers. This decreased the location inaccuracies and the residuals by a factor of six. In addition, the retrieved layer dip was consistent with the pseudo-horizontal trajectories of the wells and the background information provided by the customer. Finally, the theoretical position of each calibration shot was contained in the uncertainty domain of the relocation of each shot. In contrast, single-stage inversions provided different velocity models that were neither consistent between each other nor with the well trajectories. This example showed that it is essential to perform a multi-stage inversion to derive a better updated velocity model. [source]


Accurate stresses in the thin-layer method

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 3 2004
Article first published online: 29 JUL 200, Eduardo Kausel
Abstract A method is described by means of which accurate strains and stresses can be obtained for problems of wave motion in laminated media modelled with the thin layer method (TLM), a semi-discrete procedure that combines the power of finite elements with that of analytical solutions. It is shown that when the displacements in the TLM are combined with the consistent stresses at the layer interfaces, strains and stresses anywhere in the medium can be obtained with the same level of accuracy as the displacements. The proposed method thus circumvents the intrinsic problem that arises when strains are obtained via differentiation. As a bonus, it also renders the stresses continuous across layer interfaces, which is not the case when stresses are obtained via differentiation of the primary interpolation field. Copyright © 2004 John Wiley & Sons, Ltd. [source]