Home About us Contact | |||
Layer III (layer + iii)
Selected AbstractsIbotenate Injections into the Pre- and Parasubiculum Provide Partial Protection against Kainate-Induced Epileptic Damage in Layer III of Rat Entorhinal CortexEPILEPSIA, Issue 7 2001Tore Eid Summary: ,Purpose: A loss of neurons in layer III of the entorhinal cortex (EC) is often observed in patients with temporal lobe epilepsy and in animal models of the disorder. We hypothesized that the susceptibility of layer III of the EC to prolonged seizure activity might be mediated by excitatory afferents originating in the presubiculum. Methods: Experiments were designed to ablate the presubiculum unilaterally by focal ibotenate injections and to evaluate the effect of this deafferentation on the vulnerability of EC layer III neurons to the chemoconvulsant kainate (injected systemically 5 days later). Results: After treatment with kainate, 11 of the 15 rats preinjected with ibotenate showed clear-cut, partial neuroprotection in layer III of the EC ipsilateral to the ibotenate lesion. Serial reconstruction of the ibotenate-induced primary lesion revealed that entorhinal neurons were protected only in animals that had lesions in the pre- and parasubiculum, especially in the deep layers (IV,VI). Conclusions: The deep layers of the pre- and parasubiculum appear to control the seizure-induced damage of EC layer III. This phenomenon may be of relevance for epileptogenesis and for the pathogenesis of temporal lobe epilepsy. [source] The serotonin 5-HT2 receptor,phospholipase C system inhibits the induction of long-term potentiation in the rat visual cortexEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2000Yoshikuni Edagawa Abstract The effect of serotonin 5-HT2 receptor stimulation on long-term potentiation (LTP) in the primary visual cortex was investigated by using rat brain slices in vitro. Field potentials evoked by stimulation of layer IV were recorded in layer II/III. The 5-HT2 receptor agonist 1-(2,5-dimethyl-4-iodophenyl)-2-aminopropane (DOI) did not affect baseline synaptic potentials evoked by single-pulse test stimulation, but significantly inhibited the induction of LTP in a concentration-dependent manner (0.1,10 ,m). The LTP-inhibiting effect of DOI (10 ,m) was blocked by the 5-HT2,7 receptor antagonist ritanserin (10 ,m), but not by the 5-HT1A receptor antagonist NAN-190 (10 ,m) nor by the 5-HT3,4 receptor antagonist MDL72222 (10 ,m). The inhibitory effect of DOI was also blocked by the phospholipase C inhibitor U73122, but not by its inactive analogue U73343. These results suggest that visual cortex LTP is inhibited by activation of the 5-HT2 receptor,phospholipase C system. In addition, the LTP-inhibiting effect of DOI was abolished by the presence of the GABAA receptor antagonist bicuculline (10 ,m), suggesting that 5-HT2 receptor-mediated inhibition of visual cortex LTP is dependent on GABAergic inhibition. [source] Switching between "On" and "Off" states of persistent activity in lateral entorhinal layer III neurons,HIPPOCAMPUS, Issue 4 2007Babak Tahvildari Abstract Persistent neural spiking maintains information during a working memory task when a stimulus is no longer present. During retention, this activity needs to be stable to distractors. More importantly, when retention is no longer relevant, cessation of the activity is necessary to enable processing and retention of subsequent information. Here, by means of intracellular recording with sharp microelectrode in in vitro rat brain slices, we demonstrate that single principal layer III neurons of the lateral entorhinal cortex (EC) generate persistent spiking activity with a novel ability to reliably toggle between spiking activity and a silent state. Our data indicates that in the presence of muscarinic receptor activation, persistent activity following an excitatory input may be induced and that a subsequent excitatory input can terminate this activity and cause the neuron to return to a silent state. Moreover, application of inhibitory hyperpolarizing stimuli is neither able to decrease the frequency of the persistent activity nor terminate it. The persistent activity can also be initiated and terminated by synchronized synaptic stimuli of layer II/III of the perirhinal cortex. The neuronal ability to switch "On" and "Off" persistent activity may facilitate the concurrent representation of temporally segregated information arriving in the EC and being directed toward the hippocampus. © 2007 Wiley-Liss, Inc. [source] Ibotenate Injections into the Pre- and Parasubiculum Provide Partial Protection against Kainate-Induced Epileptic Damage in Layer III of Rat Entorhinal CortexEPILEPSIA, Issue 7 2001Tore Eid Summary: ,Purpose: A loss of neurons in layer III of the entorhinal cortex (EC) is often observed in patients with temporal lobe epilepsy and in animal models of the disorder. We hypothesized that the susceptibility of layer III of the EC to prolonged seizure activity might be mediated by excitatory afferents originating in the presubiculum. Methods: Experiments were designed to ablate the presubiculum unilaterally by focal ibotenate injections and to evaluate the effect of this deafferentation on the vulnerability of EC layer III neurons to the chemoconvulsant kainate (injected systemically 5 days later). Results: After treatment with kainate, 11 of the 15 rats preinjected with ibotenate showed clear-cut, partial neuroprotection in layer III of the EC ipsilateral to the ibotenate lesion. Serial reconstruction of the ibotenate-induced primary lesion revealed that entorhinal neurons were protected only in animals that had lesions in the pre- and parasubiculum, especially in the deep layers (IV,VI). Conclusions: The deep layers of the pre- and parasubiculum appear to control the seizure-induced damage of EC layer III. This phenomenon may be of relevance for epileptogenesis and for the pathogenesis of temporal lobe epilepsy. [source] High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitroEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2010Olaleke O. Oke Abstract Synchronization of neuronal activity in the visual cortex at low (30,70 Hz) and high gamma band frequencies (> 70 Hz) has been associated with distinct visual processes, but mechanisms underlying high-frequency gamma oscillations remain unknown. In rat visual cortex slices, kainate and carbachol induce high-frequency gamma oscillations (fast-,; peak frequency , 80 Hz at 37°C) that can coexist with low-frequency gamma oscillations (slow-,; peak frequency , 50 Hz at 37°C) in the same column. Current-source density analysis showed that fast-, was associated with rhythmic current sink-source sequences in layer III and slow-, with rhythmic current sink-source sequences in layer V. Fast-, and slow-, were not phase-locked. Slow-, power fluctuations were unrelated to fast-, power fluctuations, but were modulated by the phase of theta (3,8 Hz) oscillations generated in the deep layers. Fast-, was spatially less coherent than slow-,. Fast-, and slow-, were dependent on ,-aminobutyric acid (GABA)A receptors, ,-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and gap-junctions, their frequencies were reduced by thiopental and were weakly dependent on cycle amplitude. Fast-, and slow-, power were differentially modulated by thiopental and adenosine A1 receptor blockade, and their frequencies were differentially modulated by N -methyl- d -aspartate (NMDA) receptors, GluK1 subunit-containing receptors and persistent sodium currents. Our data indicate that fast-, and slow-, both depend on and are paced by recurrent inhibition, but have distinct pharmacological modulation profiles. The independent co-existence of fast-, and slow-, allows parallel processing of distinct aspects of vision and visual perception. The visual cortex slice provides a novel in vitro model to study cortical high-frequency gamma oscillations. [source] Projections from the hippocampal region to the mammillary bodies in macaque monkeysEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2005John P. Aggleton Abstract A combination of anterograde and retrograde tracers mapped the direct hippocampal and parahippocampal inputs to the mammillary bodies in two species of macaque monkey. Dense projections arose from pyramidal cells in layer III of the subiculum and prosubiculum, and terminated in the medial mammillary nucleus. While there was no evidence of an input from the dentate gyrus or fields CA1,3, a small contribution arose from the presubiculum and entorhinal cortices. All of the hippocampal and parahippocampal projections to the mammillary bodies appeared to use the fornix as a route. The caudal portions of the subiculum and prosubiculum contained the greatest numbers of cells projecting to the mammillary bodies. A light contralateral projection to the medial mammillary nucleus was also observed, although this appeared to arise primarily from the more rostral portions of the subiculum and prosubiculum. There was a crude topography within the medial mammillary nucleus, with the caudal subicular projections terminating in the mid and dorsal portions of the nucleus while the rostral subicular and entorhinal projections terminated in the ventral and lateral portions of the medial nucleus. Light ipsilateral projections throughout the lateral mammillary nucleus were sometimes observed. Comparisons with related studies of the macaque brain showed that the dense hippocampal projections to the mammillary bodies arise from a population of subicular cells separate from those that project to the anterior thalamic nuclei, even though the major output from the mammillary bodies is to the anterior thalamic nuclei. Other comparisons revealed underlying similarities with the corresponding projections in the rat brain. [source] Dopamine D1-like receptor modulates layer- and frequency-specific short-term synaptic plasticity in rat prefrontal cortical neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2005Clint E. Young Abstract The mesocortical dopamine (DA) input to the prefrontal cortex (PFC) is crucial for processing short-term working memory (STWM) to guide forthcoming behavior. Short-term plasticity-like post-tetanic potentiation (PTP, < 3 min) and short-term potentiation (STP, <,10 min) may underlie STWM. Using whole-cell voltage-clamp recordings, mixed glutamatergic excitatory postsynaptic currents (EPSCs) evoked by layer III or layer V stimulation (0.5 or 0.067 Hz) were recorded from layer V pyramidal neurons. With 0.5 Hz basal stimulation of layer III, brief tetani (2 × 50 Hz) induced a homosynaptic PTP (decayed: ,1 min). The D1-like antagonist SCH23390 (1 µm) increased the PTP amplitude and decay time without inducing changes to the tetanic response. The tetani may evoke endogenous DA release, which activates a presynaptic D1-like receptor to inhibit glutamate release to modulate PTP. With a slower (0.067 Hz) basal stimulation, the same tetani induced STP (lasting ,4 min, but only at 2× intensity only) that was insignificantly suppressed by SCH23390. With stimulation of layer-V,V inputs at 0.5 Hz, layer V tetani yielded inconsisitent responses. However, at 0.067 Hz, tetani at double the intensity resulted in an STP (lasting ,6 min), but a long-term depression after SCH23390 application. Endogenous DA released by tetanic stimulation can interact with a D1-like receptor to induce STP in layer V,V synapses that receive slower (0.067 Hz) frequency inputs, but suppresses PTP at layer III,V synapses that receive higher (0.5 Hz) frequency inputs. This D1-like modulation of layer- and frequency-specific synaptic responses in the PFC may contribute to STWM processing. [source] Neuropathology of Rett syndromeDEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 2 2002Dawna Duncan Armstrong Abstract Rett Syndrome is unlike any other pediatric neurologic disease, and its clinical-pathologic correlation can not be defined with standard histology techniques. Based on hypotheses suggested by careful clinical observations, the nervous system of the Rett child has been explored utilizing morphometry, golgi preparations, computerized tomography, magnetic resonance imaging, chemistry, immunocytochemistry, autoradiography, and molecular biologic techniques. From these many perspectives we conclude that Rett syndrome is not a typical degenerative disorder, storage disorder, nor the result of gross malformation, infectious or neoplastic processes. There remain regions of the brain that have not been studied in detail but the available data suggest that the neuropathology of Rett syndrome can be summarized as follows: the Rett brain is small for the age and the height of the patient; it does not become progressively smaller over three to four decades; it has small dendritic trees in pyramidal neurons of layers III and V in selected lobes (frontal, motor, and temporal); it has small neurons with an increased neuronal packing density; it has an immature expression of microtubular protein-2 and cyclooxygenase; it exhibits a changing pattern of neurotransmitter receptors with an apparent reduction in many neurotransmitters, possibly contributing to some symptomatology. A mutation in Mecp2 causes this unique disorder of brain development. Neuronal mosaicism for normal and mutated Mecp2 produces a consistent phenotype in the classic female patient and a small brain with some preserved islands of function, but with an inability to support hand use and speech. This paper summarizes our current observations about neuropathology of Rett syndrome. MRDD Research Reviews 2002;8:72,76. © 2002 Wiley-Liss, Inc. [source] Patterns of calcium-binding proteins support parallel and hierarchical organization of human auditory areasEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2003Oriana Chiry Abstract The human primary auditory cortex (AI) is surrounded by several other auditory areas, which can be identified by cyto-, myelo- and chemoarchitectonic criteria. We report here on the pattern of calcium-binding protein immunoreactivity within these areas. The supratemporal regions of four normal human brains (eight hemispheres) were processed histologically, and serial sections were stained for parvalbumin, calretinin or calbindin. Each calcium-binding protein yielded a specific pattern of labelling, which differed between auditory areas. In AI, defined as area TC [see C. von Economo and L. Horn (1930) Z. Ges. Neurol. Psychiatr.,130, 678,757], parvalbumin labelling was dark in layer IV; several parvalbumin-positive multipolar neurons were distributed in layers III and IV. Calbindin yielded dark labelling in layers I,III and V; it revealed numerous multipolar and pyramidal neurons in layers II and III. Calretinin labelling was lighter than that of parvalbumin or calbindin in AI; calretinin-positive bipolar and bitufted neurons were present in supragranular layers. In non-primary auditory areas, the intensity of labelling tended to become progressively lighter while moving away from AI, with qualitative differences between the cytoarchitectonically defined areas. In analogy to non-human primates, our results suggest differences in intrinsic organization between auditory areas that are compatible with parallel and hierarchical processing of auditory information. [source] |