Home About us Contact | |||
Lattice Thermal Conductivity (lattice + thermal_conductivity)
Kinds of Lattice Thermal Conductivity Selected AbstractsOn the Design of High-Efficiency Thermoelectric Clathrates through a Systematic Cross-Substitution of Framework ElementsADVANCED FUNCTIONAL MATERIALS, Issue 5 2010Xun Shi Abstract Type I clathrates have recently been identified as prospective thermoelectric materials for power generation purposes due to their very low lattice thermal conductivity values. The maximum thermoelectric figure of merit of almost all type I clathrates is, however, less than 1 and occurs at, or above, 1000,K, making them unfavorable especially for intermediate temperature applications. In this report, the Zintl,Klemm rule is demonstrated to be valid for Ni, Cu, and Zn transition metal substitution in the framework of type I clathrates and offers many degrees of freedom for material modification, design, and optimization. The cross-substitution of framework elements introduces ionized impurities and lattice defects into these materials, which optimize the scattering of charge carriers by the substitution-induced ionized impurities and the scattering of heat-carrying lattice phonons by point defects, respectively, leading to an enhanced power factor, reduced lattice thermal conductivity, and therefore improved thermoelectric figure of merit. Most importantly, the bandgap of these materials can be tuned between 0.1 and 0.5,eV by adjusting the cross-substitution ratio of framework elements, making it possible to design clathrates with excellent thermoelectric properties between 500 and 1000,K. [source] Microstructure-Lattice Thermal Conductivity Correlation in Nanostructured PbTe0.7S0.3 Thermoelectric MaterialsADVANCED FUNCTIONAL MATERIALS, Issue 5 2010Jiaqing He Abstract The reduction of thermal conductivity, and a comprehensive understanding of the microstructural constituents that cause this reduction, represent some of the important challenges for the further development of thermoelectric materials with improved figure of merit. Model PbTe-based thermoelectric materials that exhibit very low lattice thermal conductivity have been chosen for this microstructure,thermal conductivity correlation study. The nominal PbTe0.7S0.3 composition spinodally decomposes into two phases: PbTe and PbS. Orderly misfit dislocations, incomplete relaxed strain, and structure-modulated contrast rather than composition-modulated contrast are observed at the boundaries between the two phases. Furthermore, the samples also contain regularly shaped nanometer-scale precipitates. The theoretical calculations of the lattice thermal conductivity of the PbTe0.7S0.3 material, based on transmission electron microscopy observations, closely aligns with experimental measurements of the thermal conductivity of a very low value, ,0.8,W,m,1,K,1 at room temperature, approximately 35% and 30% of the value of the lattice thermal conductivity of either PbTe and PbS, respectively. It is shown that phase boundaries, interfacial dislocations, and nanometer-scale precipitates play an important role in enhancing phonon scattering and, therefore, in reducing the lattice thermal conductivity. [source] Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring ApproachADVANCED FUNCTIONAL MATERIALS, Issue 3 2010Yucheng Lan Abstract Recently a significant figure-of-merit (ZT) improvement in the most-studied existing thermoelectric materials has been achieved by creating nanograins and nanostructures in the grains using the combination of high-energy ball milling and a direct-current-induced hot-press process. Thermoelectric transport measurements, coupled with microstructure studies and theoretical modeling, show that the ZT improvement is the result of low lattice thermal conductivity due to the increased phonon scattering by grain boundaries and structural defects. In this article, the synthesis process and the relationship between the microstructures and the thermoelectric properties of the nanostructured thermoelectric bulk materials with an enhanced ZT value are reviewed. It is expected that the nanostructured materials described here will be useful for a variety of applications such as waste heat recovery, solar energy conversion, and environmentally friendly refrigeration. [source] Nanostructured Bulk Silicon as an Effective Thermoelectric MaterialADVANCED FUNCTIONAL MATERIALS, Issue 15 2009Sabah K. Bux Abstract Thermoelectric power sources have consistently demonstrated their extraordinary reliability and longevity for deep space missions and small unattended terrestrial systems. However, more efficient bulk materials and practical devices are required to improve existing technology and expand into large-scale waste heat recovery applications. Research has long focused on complex compounds that best combine the electrical properties of degenerate semiconductors with the low thermal conductivity of glassy materials. Recently it has been found that nanostructuring is an effective method to decouple electrical and thermal transport parameters. Dramatic reductions in the lattice thermal conductivity are achieved by nanostructuring bulk silicon with limited degradation in its electron mobility, leading to an unprecedented increase by a factor of 3.5 in its performance over that of the parent single-crystal material. This makes nanostructured bulk (nano-bulk) Si an effective high temperature thermoelectric material that performs at about 70% the level of state-of-the-art Si0.8Ge0.2 but without the need for expensive and rare Ge. [source] Analysis of Nanostructuring in High Figure-of-Merit Ag1,xPbmSbTe2+m Thermoelectric MaterialsADVANCED FUNCTIONAL MATERIALS, Issue 8 2009Bruce A. Cook Abstract Thermoelectric materials based on quaternary compounds Ag1,xPbmSbTe2+m exhibit high dimensionless figure-of-merit values, ranging from 1.5 to 1.7 at 700,K. The primary factor contributing to the high figure of merit is a low lattice thermal conductivity, achieved through nanostructuring during melt solidification. As a consequence of nucleation and growth of a second phase, coherent nanoscale inclusions form throughout the material, which are believed to result in scattering of acoustic phonons while causing only minimal scattering of charge carriers. Here, characterization of the nanosized inclusions in Ag0.53Pb18Sb1.2Te20 that shows a strong tendency for crystallographic orientation along the {001} planes, with a high degree of lattice strain at the interface, consistent with a coherent interfacial boundary is reported. The inclusions are enriched in Ag relative to the matrix, and seem to adopt a cubic, 96 atom per unit cell Ag2Te phase based on the Ti2Ni type structure. In-situ high-temperature synchrotron radiation diffraction studies indicated that the inclusions remain thermally stable to at least 800,K. [source] Improved Thermoelectric Properties of Cu-Doped Quaternary Chalcogenides of Cu2CdSnSe4ADVANCED MATERIALS, Issue 37 2009Min-Ling Liu The chalcopyrite-like structure of Cu2MSnQ4 is an ordered tetrahedral array of flattened CuQ4 and undistorted MQ4 and SnQ4, with a low lattice thermal conductivity. The [Cu2Q4] tetrahedral layers are electrically conducting, and the [SnMQ4] layers are electrically insulating. [source] Synthesis and thermoelectric properties of YbSb2Te4PHYSICA STATUS SOLIDI - RAPID RESEARCH LETTERS, Issue 6 2007Amado S. Guloy Abstract The study of the ternary phase diagram Yb,Sb,Te has led to the synthesis of YbSb2Te4 as a pure phase by way of high energy ball milling followed by annealing, whereas typical high temperature powder metallurgy leads to multiphase sample with impurities of the very stable YbTe. The Hall mobility, Seebeck coefficient, electrical resistivity and thermal conductivity of the layered compound YbSb2Te4 were measured in the range of 20,550 °C. The thermoelectric figure of merit peaks at 525 K and reaches 0.5. Of particular interest is the very low lattice thermal conductivity (as low as a glass) which makes YbSb2Te4 and related compounds promising thermoelectric materials. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Gliding dislocations in Bi2Te3 materialsPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 1 2009N. Peranio Abstract In Bi2Te3, dislocations were found with an uniquely high mobility at room temperature. The gliding dislocations were analysed and their effect on the thermoelectric properties is discussed. The glide of dislocations was induced by heating with a focused electron beam at 120 keV, external stresses were not applied. The dislocations were bowed out in the glide direction and were only pinned at the surface of the samples. Stereomicroscopy combined with image simulations yielded basal plane dislocations with a density of 109 cm,2 and Burgers vectors of type ,110,. Video sequences showing the glide of single dislocations and groups of dislocations were recorded. Isolated dislocations showed a high mobility in ±,110, direction at a velocity of 10,100 nm s,1. Dislocation dipoles were pinned and did not glide. Dislocations equidistantly arranged within the same glide plane showed a collective movement. Dislocations piled up in different glide planes were fixed and acted as barriers for gliding dislocations. The motion of dislocations was attributed to residual shear stresses of about 10 MPa, and their glide directions depended on the sign of the Burgers vector. Attractive and repulsive forces of dislocations directly visualise the forces due to the elastic strain fields of other dislocations. The relevance of phonon scattering on dislocations in Bi2Te3, particularly due to their high mobility and density, was confirmed by two inspections: (i) Dislocations decrease the lattice thermal conductivity due to phonon scattering on the elastic strain field. The phonon mean free path was estimated to about 800 µm at 3 K and agreed with published data. (ii) The dislocation resonance theory of Granato and Lücke predicts an interaction between phonons and dislocations acting as oscillating strings. The attenuation of ultrasound was estimated and was compared with published data. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |