Home About us Contact | |||
Larval Supply (larval + supply)
Selected AbstractsTemporal variability in fish larval supply to Malindi Marine Park, coastal KenyaAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue S1 2009Boaz Kaunda-Arara Abstract 1.Larval supply to reef sites influences adult population structure, reef connectivity and conservation potential of marine reserves, but few studies have examined this topic in the Western Indian Ocean (WIO). 2.Fish larval supply to Malindi Marine Park in Kenya was studied using light-traps for a period extending from March 2005 to June 2006. The traps caught pre-settlement fish larvae at two sites spread across the park. Catch rates (number trap,1night,1) were used to represent larval abundance and to test the influence of seasonality and habitat characteristics on larval abundance in the park. 3.Thirty-three species of reef fish larvae in 15 families were sampled. Larval supply to the park was more diverse during the north-east monsoon season (30 species) than in the south-east monsoon season (15 species), with inter-annual variability in abundance. Higher catch rates of larvae occurred in the north-east monsoon month of March in both 2005 and 2006 and the inter-monsoon month of September 2005. 4.Family-specific temporal variation in larval abundance showed dominance of the families Apogonidae and Caesionidae in the park, with higher abundance during the north-east monsoon months. A few families (e.g. Canthigasteridae) showed dominance during the south-east monsoon season. Regression and rank Spearman correlation analyses indicated positive correlation of chlorophyll-a with larval supply while water depth had significant negative correlation with abundance of the Apogonidae and Caesionidae. 5.On a short-term temporal scale larval abundance in the park was highly correlated with the new moon lunar phase more than the full moon. However, on a long-term scale (16 months) larval supply to the park was significant only over a 2-month period and was correlated with environmental productivity more than ambient temperature. These results are useful in understanding the role of larval supply in structuring adult fish populations and the factors that force larval flux at reef sites. Copyright © 2009 John Wiley & Sons, Ltd. [source] Experimental Assessment of Coral Reef Rehabilitation Following Blast FishingCONSERVATION BIOLOGY, Issue 1 2005HELEN E. FOX arrecifes de Indonesia; recuperación de arrecife de coral; restauración de arrecifes Abstract:,Illegal fishing with explosives has damaged coral reefs throughout Southeast Asia. In addition to killing fish and other organisms, the blasts shatter coral skeletons, leaving fields of broken rubble that shift in the current, abrading or burying new coral recruits, and thereby slowing or preventing reef recovery. Successful restoration and rehabilitation efforts can contribute to coral reef conservation. We used field experiments to assess the effectiveness of different low-cost methods for coral reef rehabilitation in Komodo National Park (KNP), Indonesia. Our experiments were conducted at three different spatial scales. At a scale of 1 × 1 m plots, we tested three different rehabilitation methods: rock piles, cement slabs, and netting pinned to the rubble. Significantly more corals per square meter grew on rocks, followed by cement, netting, and untreated rubble, although many plots were scattered by strong water current or buried by rubble after 2.5 years. To test the benefits of the most successful treatment, rocks, at more realistic scales, we established 10 × 10 m plots of rock piles at each of our nine sites in 2000. Three years after installation, coverage by hard corals on the rocks continued to increase, although rehabilitation in high current areas remained the most difficult. In 2002 rehabilitation efforts in KNP were increased over 6000 m2 to test four rock pile designs at each of four rubble field sites. Assuming that there is an adequate larval supply, using rocks for simple, low-budget, large-scale rehabilitation appears to be a viable option for restoring the structural foundation of damaged reefs. Resumen:,La pesca ilegal con explosivos ha dañado a arrecifes de coral en el sureste de Asia. Además de matar a peces y otros organismos, las explosiones destruyen esqueletos de corales, dejando campos de escombros rotos que se mueven con la corriente, erosionando o enterrando a reclutas de coral nuevos y por lo tanto disminuyen o previenen la recuperación del coral. Esfuerzos exitosos de restauración y rehabilitación pueden contribuir a la conservación de arrecifes de coral. Usamos experimentos de campo para evaluar la efectividad de diferentes métodos de bajo costo para la rehabilitación de arrecifes de coral en el Parque Nacional Komodo (PNK), Indonesia. Desarrollamos nuestros experimentos en tres escalas espaciales diferentes. A una escala de parcelas de 1 x 1 m, probamos tres métodos de rehabilitación: pilas de rocas, losas de cemento y redes sobre el escombro. Crecieron significativamente más corales por metro cuadrado sobre rocas, seguido por el cemento, redes y escombro sin tratamiento, aunque muchas parcelas fueron dispersadas por la fuerte corriente de agua o enterradas por escombros después de 2.5 años. Para probar los beneficios del tratamiento más exitoso, rocas, a escalas más realistas, en 2000 establecimos parcelas de 10 x10 m con pilas de rocas en cada unos de nuestros nueve sitios. Tres años después, la cobertura de corales duros sobre las rocas continuó incrementando, aunque la rehabilitación en áreas con corrientes fuertes fue la más difícil. En 2002, los esfuerzos de rehabilitación en PNK se incrementaron a 6000 m2 para probar cuatro diseños de pilas de rocas en cada uno de los cuatro sitios con escombros. Asumiendo que hay una adecuada existencia de larvas, la utilización de rocas para rehabilitación simple, de bajo costo y gran escala parece ser una opción viable para la restauración de la base estructural de arrecifes dañados. [source] Consistent spatial patterns across biogeographic gradients in temperate reef fishesECOGRAPHY, Issue 1 2008Maren Wellenreuther Biogeographic gradients may facilitate divergent evolution between populations of the same species, leading to geographic variation and possibly reproductive isolation. Previous work has shown that New Zealand triplefin species (family Tripterygiidae) have diversified in habitat use, however, knowledge about the consistency of this pattern throughout their geographic range is lacking. Here we examine the spatial habitat associations of 15 New Zealand triplefin species at nine locations on a latitudinal gradient from 35°50,S to 46°70,S to establish whether distant populations differ in habitat use. Triplefin diversity and density varied between locations, as did habitat variables such as percentage cover of the substratum, onshore-offshore location, microposition, depth and exposure. Canonical discriminant analysis identified specific species-habitat combinations, and when habitat was statistically partialled from location, most species exhibited consistent habitat associations throughout their range. However, the density of a few species at some locations was lower or higher than expected given the habitat availability. This indicates that the habitat variables recorded were not the sole predictors of assemblage structure, and it is likely that factors influencing larval dispersal (e.g. the low salinity layer in Fiordland and geographic isolation of the Three Kings Islands) play an additional role in structuring assemblage composition. Together these results suggest that New Zealand triplefin species show strong and consistent habitat use across potential biogeographical barriers, but this pattern appears to be modified by variation in larval supply and survival. This indicates that species with broad geographic distributions do not necessarily show phenotypic variation between populations. [source] Mechanistic links between climate and fisheries along the east coast of the United States: explaining population outbursts of Atlantic croaker (Micropogonias undulatus)FISHERIES OCEANOGRAPHY, Issue 1 2007JONATHAN A. HARE Abstract Climate has been linked to variation in marine fish abundance and distribution, but often the mechanistic processes are unknown. Atlantic croaker (Micropogonias undulatus) is a common species in estuarine and coastal areas of the mid-Atlantic and southeast coasts of the U.S. Previous studies have identified a correlation between Atlantic croaker abundance and winter temperatures in Chesapeake Bay, and have determined thermal tolerances of juveniles. Here we re-examine the hypothesis that winter temperature variability controls Atlantic croaker population dynamics. Abundance indices were analyzed at four life history stages from three regions along the east coast of the U.S. Correlations suggest that year-class strength is decoupled from larval supply and is determined by temperature-linked, overwinter survival of juveniles. Using a relation between air and water temperatures, estuarine water temperature was estimated from 1930 to 2002. Periods of high adult catch corresponded with warm winter water temperatures. Prior studies indicate that winter temperature along the east coast is related to the North Atlantic Oscillation (NAO); variability in catch is also correlated with the NAO, thereby demonstrating a link between Atlantic croaker dynamics, thermal limited overwinter survival, and the larger climate system of the North Atlantic. We hypothesize that the environment drives the large-scale variability in Atlantic croaker abundance and distribution, but fishing and habitat loss decrease the resiliency of the population to periods of poor environmental conditions and subsequent weak year classes. [source] Simulating larval supply to estuarine nursery areas: how important are physical processes to the supply of larvae to the Aransas Pass Inlet?FISHERIES OCEANOGRAPHY, Issue 3 2004C. A. Brown Abstract Factors controlling the movement of fish larvae from coastal spawning environments to estuarine nursery areas are important to fish recruitment. In this paper, the role of physical processes in larval transport to estuarine nursery areas in the Aransas Pass region, Texas, is examined using a circulation model coupled with a fixed-depth particle transport model. Two phases of transport are examined: transport on the shelf to the tidal inlet and transport through the inlet to estuarine nursery areas. Observed pulsing in the supply of red drum (Sciaenops ocellatus) larvae to the tidal inlet is significantly correlated with modeled particle supply. This pulsing is not correlated with a specific physical process, but results from the interaction of several factors affecting water movement, including low-frequency variations in water level and wind forcing. Simulations suggest that the primary spawning region for red drum larvae that utilize nursery habitat in the Aransas Pass region is located north of the inlet. Patterns in the trajectories of particles that successfully enter the inlet reveal that they move alongshelf in the nearshore region and then move into the inlet, rather than moving directly across the shelf to the inlet. The approach path of particles outside the inlet determines the spatial transport patterns for inlets with branched channels and multiple bays. This study demonstrates that physical processes play an important role in determining larval supply to a tidal inlet. [source] Temporal variability in fish larval supply to Malindi Marine Park, coastal KenyaAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue S1 2009Boaz Kaunda-Arara Abstract 1.Larval supply to reef sites influences adult population structure, reef connectivity and conservation potential of marine reserves, but few studies have examined this topic in the Western Indian Ocean (WIO). 2.Fish larval supply to Malindi Marine Park in Kenya was studied using light-traps for a period extending from March 2005 to June 2006. The traps caught pre-settlement fish larvae at two sites spread across the park. Catch rates (number trap,1night,1) were used to represent larval abundance and to test the influence of seasonality and habitat characteristics on larval abundance in the park. 3.Thirty-three species of reef fish larvae in 15 families were sampled. Larval supply to the park was more diverse during the north-east monsoon season (30 species) than in the south-east monsoon season (15 species), with inter-annual variability in abundance. Higher catch rates of larvae occurred in the north-east monsoon month of March in both 2005 and 2006 and the inter-monsoon month of September 2005. 4.Family-specific temporal variation in larval abundance showed dominance of the families Apogonidae and Caesionidae in the park, with higher abundance during the north-east monsoon months. A few families (e.g. Canthigasteridae) showed dominance during the south-east monsoon season. Regression and rank Spearman correlation analyses indicated positive correlation of chlorophyll-a with larval supply while water depth had significant negative correlation with abundance of the Apogonidae and Caesionidae. 5.On a short-term temporal scale larval abundance in the park was highly correlated with the new moon lunar phase more than the full moon. However, on a long-term scale (16 months) larval supply to the park was significant only over a 2-month period and was correlated with environmental productivity more than ambient temperature. These results are useful in understanding the role of larval supply in structuring adult fish populations and the factors that force larval flux at reef sites. Copyright © 2009 John Wiley & Sons, Ltd. [source] Response of a gorgonian (Paramuricea clavata) population to mortality events: recovery or loss?AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 6 2008R. Cupido Abstract 1.During late summer 1999 and 2003 two mass mortality events affected the population of the slow growing, long-lived Mediterranean gorgonian Paramuricea clavata living in the Gulf of La Spezia (Italy). 2.The population was monitored for three years after the mortality events. Availability of pre-event data (1998) allowed comparison of population density and population size structure of the healthy population with those recorded in the three years following the mortality events. 3.In 1998, before the two mass mortality events, mean colony density was 33.3,±,3.7 colonies m,2 and had fallen to 6.7,±,1.9 colonies m,2 in 2004. 4.In the post-event period the population size structure changed and the modal class of colonies shifted from 16,21 cm to 6,15 cm height. 5.In 2004 mortality affected 75,±,6.4% of colonies. A significant, positive correlation between the extent of damage and colony size was found throughout the monitoring period. 6.In the three years following the two mortality events, a small increase in density of recruits and of older undamaged colonies was recorded suggesting that the population was slowly recovering. 7.The bathymetric distribution of P. clavata straddles the summer thermocline making this population particularly sensitive to temperature increases. The lack of deeper colonies (less exposed to warming) and the geographical isolation of this population is likely to prevent any substantial external larval supply. 8.An increased frequency of mass mortality events associated with ever increasingly high temperature events represent a considerable threat to the persistence of a P. clavata population in the Gulf of La Spezia. Copyright © 2007 John Wiley & Sons, Ltd. [source] |