Larvae Feeding (larva + feeding)

Distribution by Scientific Domains


Selected Abstracts


How two different host species influence the performance of a gregarious parasitoid: host size is not equal to host quality

JOURNAL OF ANIMAL ECOLOGY, Issue 2 2007
JOHANNA HÄCKERMANN
Summary 1Hyssopus pallidus Askew (Hymenoptera, Eulophidae) is a gregarious ectoparasitoid of the two tortricid moths species Cydia molesta Busck and C. pomonella L. (Lepidoptera, Tortricidae). It paralyses and parasitizes different larval instars of both species inside the apple fruit, which leads to the death of the caterpillar. 2We assessed the influence of host species characteristics and host food on the performance of the parasitoid female in terms of clutch size decisions and fitness of the F1 generation. 3A comparison of clutch size revealed that female parasitoids deposited similar numbers of eggs on the comparatively smaller C. molesta hosts as on the larger C. pomonella hosts. The number of parasitoid offspring produced per weight unit of host larva was significantly higher in C. molesta than in C. pomonella, which is contrary to the general prediction that smaller hosts yield less parasitoid offspring. However, the sex ratio was not influenced by host species that differed considerably in size. 4Despite the fact that less host resources were available per parasitoid larva feeding on C. molesta caterpillars, the mean weight of emerging female wasps was higher in the parasitoids reared on C. molesta. Furthermore, longevity of these female wasps was neither influenced by host species nor by the food their host had consumed. In addition we did not find a positive relationship between adult female weight and longevity. 5Parasitoid females proved to be able to assess accurately the nutritional quality of an encountered host and adjust clutch size accordingly. These findings indicate that host size is not equal to host quality. Thus host size is not the only parameter to explain the nutritional quality of a given host and to predict fitness gain in the subsequent generation. [source]


Trade-offs in oviposition choice?

ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 2 2007
Food-dependent performance, defence against predators of a herbivorous sawfly
Abstract The sawfly Athalia rosae L. (Hymenoptera: Tenthredinidae) is a feeding specialist on plant species of the Brassicaceae, which are characterised by secondary metabolites, called glucosinolates. The larvae can take up the respective glucosinolates of their hosts and concentrate them in their haemolymph to protect themselves against predators. Oviposition preferences of naďve females were tested for three species, Sinapis alba L., Brassica nigra (L.) Koch, and Barbarea stricta Andrz., and were related to larval performance patterns. Larvae were reared on either one of these plants and it was investigated how host-plant quality influences both the developmental times and growth of larvae (bottom-up) and the defence efficiency against predators (top-down). Innately, almost all adult females avoided B. stricta for oviposition and clearly preferred B. nigra over S. alba. On average, larvae developed best on B. nigra. Female larvae reached similar final body masses on all host-plant species, but males reared on S. alba were slightly lighter. The developmental time of larvae reared on B. stricta was significantly longer than on the other two plants. However, larvae reared on B. stricta were best protected against the predatory wasp Polistes dominulus Christ (Hymenoptera: Vespidae). The wasps rejected these larvae most often, while they attacked larvae reared on S. alba most frequently. Thus, larvae feeding on B. stricta theoretically run a higher risk of predation due to a prolonged developmental time, but in practice they are better protected against predators. Overall, oviposition preferences of A. rosae seem to be more influenced by bottom-up effects on larval performance than by top-down effects. [source]


The effect of diet on the expression of lipase genes in the midgut of the lightbrown apple moth (Epiphyas postvittana Walker; Tortricidae)

INSECT MOLECULAR BIOLOGY, Issue 1 2010
J. T. Christeller
Abstract We have identified lipase-like genes from an Epiphyas postvittana larval midgut EST library. Of the 10 pancreatic lipase family genes, six appear to encode active lipases and four encode inactive lipases, based on the presence/absence of essential catalytic residues. The four gastric lipase family genes appear to encode active proteins. Phylogenetic analysis of 54 lepidopteran pancreatic lipase proteins resolved the clade into five groups of midgut origin and a sixth of non-midgut lipases. The inactive proteins formed two separate groups with highly conserved mutations. The lepidopteran midgut lipases formed a ninth subfamily of pancreatic lipases. Eighteen insect and human gastric lipases were analysed phylogenetically with only very weak support for any groupings. Gene expression was measured in the larval midgut following feeding on five artificial diets and on apple leaves. The artificial diets contained different levels of triacylglycerol, linoleic acid and cholesterol. Significant changes in gene expression (more than 100-fold for active pancreatic lipases) were observed. All the inactive lipases were also highly expressed. The gastric lipase genes were expressed at lower levels and suppressed in larvae feeding on leaves. Together, protein motif analysis and the gene expression data suggest that, in phytophagous lepidopteran larvae, the pancreatic lipases may function in vivo as galactolipases and phospholipases whereas the gastric lipases may function as triacylglycerol hydrolases. [source]


The role of competition in adaptive radiation: a field study on sequentially ovipositing host-specific seed predators

JOURNAL OF ANIMAL ECOLOGY, Issue 1 2004
Laurence Després
Summary 1We propose an alternative model to the host-shifting model of sympatric speciation in plant,insect systems. The role of competition in driving ecological adaptive radiation was evaluated in a seed predator exploiting a single host-plant species. Sympatric speciation may occur through disruptive selection on oviposition timing if this shift decreases competition among larvae feeding on seeds. 2The globeflower fly Chiastocheta presents a unique case of adaptive radiation, with at least six sister species co-developing in fruits of Trollius europaeus. These species all feed on seeds, and differ in their oviposition timing, one species ovipositing in 1-day-old flowers (early species), while all the other species sequentially oviposit throughout the flower life span (late species). We evaluated the impact of conspecific and heterospecific larvae on larval installation success, and on larval fresh mass and area, for early and late species, in natural conditions. 3None of the three larval traits measured was correlated with fruit size, and no fruit lost all seeds to predation, suggesting that seed availability was not a limiting factor for larval development. 4Our results show strong intraspecific competition among early larvae for larval installation, and among late larvae for larval mass. By contrast, larval competition between species was weak. These results are consistent with the hypothesis that shifts in oviposition promoted rapid radiation in globeflower flies by lowering competition among larvae. [source]


A quantitative genetic analysis of leaf beetle larval performance on two natural hosts: including a mixed diet

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2000
Ballabeni
Published quantitative genetic studies of larval performance on different host plants have always compared performance on one host species or genotype vs. performance on another species or genotype. The fact that some insects may feed on more than one plant species during their development has been neglected. We executed a quantitative genetic analysis of performance with larvae of the leaf beetle Oreinaelongata, raised on each of two sympatric host plants or on a mixture of them. Growth rate was higher for larvae feeding on Adenostylesalliariae, intermediate on the mixed diet and lowest on Cirsium spinosissimum. Development time was shortest on A. alliariae, intermediate on mixed diet and longest on C. spinosissimum. Survival was higher on the mixed diet than on both pure hosts. Genetic variation was present for all three performance traits but a genotype by host interaction was found only for growth rate. However, the reaction norms for growth rate are unlikely to evolve towards an optimal shape because of a lack of heritability of growth rate in each single environment. We found no negative genetic correlations for performance traits among hosts. Therefore, our results do not support a hypothesis predicting the existence of between-host trade-offs in performance when both hosts are sympatric with an insect population. We conclude that the evolution of host specialized genotypes is unlikely in the study population. [source]


Development of feeding structures in larval fish with different life histories: winter flounder and Atlantic cod

JOURNAL OF FISH BIOLOGY, Issue 4 2001
I. Hunt von Herbing
The size at which feeding structures developed and shifts in head proportions occurred, differed between Atlantic cod Gadus morhua and winter flounder Pseudopleuronectes americanus. The sequence and timing of the development of feeding structures may not be dependent on size, but may occur because they are necessary to meet specific requirements offish larvae feeding in the plankton. In early larval stages development of feeding structures was similar in number and type and was necessary for first-feeding in both species. In later stages, significant differences between species occurred in the timing of the development of feeding structures. In cod differentiation of new structures and changes in head proportions occurred at about two-thirds of the way through larval life, which coincided with an increase in growth. In flounder changes in feeding morphology did not occur during the symmetrical larval stage, but occurred only after metamorphosis to the asymmetrical demersal juvenile stage. Differences between cod and flounder in the size at which feeding structures develop may reflect life history adaptations expressed in the duration of the pelagic larval stage, as well as differences in juvenile habitat and feeding ecology. [source]


Interactions between above- and belowground insect herbivores as mediated by the plant defense system

OIKOS, Issue 3 2003
T. M. Bezemer
Plants are frequently attacked by both above- and belowground arthropod herbivores. Nevertheless, studies rarely consider root and shoot herbivory in conjunction. Here we provide evidence that the root-feeding insect Agriotes lineatus reduces the performance of the foliage feeding insect Spodoptera exigua on cotton plants. In a bioassay, S. exigua larvae were allowed to feed on either undamaged plants, or on plants that had previously been exposed to root herbivory, foliar herbivory, or a combination of both. Previous root herbivory reduced the relative growth rates as well as the food consumption of S. exigua by more than 50% in comparison to larvae feeding on the undamaged controls. We found no effects in the opposite direction, as aboveground herbivory by S. exigua did not affect the relative growth rates of root-feeding A. lineatus. Remarkably, neither did the treatment with foliar herbivory affect the food consumption and relative growth rate of S. exigua in the bioassay. However, this treatment did result in a significant change in the distribution of S. exigua feeding. Plants that had been pre-exposed to foliar herbivory suffered significantly less damage on their young terminal leaves. While plant growth and foliar nitrogen levels were not affected by any of the treatments, we did find significant differences between treatments with respect to the level and distribution of plant defensive chemicals (terpenoids). Exposure to root herbivores resulted in an increase in terpenoid levels in both roots as well as in mature and immature foliage. Foliar damage, on the other hand, resulted in high terpenoid levels in young, terminal leaves only. Our results show that root-feeding herbivores may change the level and distribution of plant defenses aboveground. Our data suggest that the reported interactions between below- and aboveground insect herbivores are mediated by induced changes in plant secondary chemistry. [source]


Using nutritional indices to study LOX3-dependent insect resistance

PLANT CELL & ENVIRONMENT, Issue 8 2006
CBGOWDA RAYAPURAM
ABSTRACT Induced resistance to biotic attackers is thought to be mediated by responses elicited by jasmonic acid (JA), a subset of which are lipoxygenase 3 (LOX3) dependent. To understand the importance of LOX3-mediated insect resistance, we analysed the performance of Manduca sexta larvae on wild-type (WT) and on isogenic Nicotiana attenuata plants silenced in NaLOX3 expression and JA signalling, and we used Waldbauer nutritional indices to measure the pre- and post-ingestive effects. LOX3-mediated defenses reduced larval growth, consumption and frass production. These defenses reduced how efficiently late-instar larvae converted digested food to body mass (ECD). In contrast, LOX3-mediated defenses decreased approximate digestibility (AD) in early instar larvae without affecting the ECD and total food consumption. Larvae of all instars feeding on defended WT plants behaviourally compensate for their reduced body mass by consuming more food per unit of body mass gain. We suggest that larvae feeding on plants silenced in NaLOX3 expression (as-lox) initially increase their AD, which in turn enables them to consume more food in the later stages and consequently, to increase their ECD and efficiency of conversion of ingested food (ECI). We conclude that N. attenuata's oxylipin-mediated defenses are important for resisting attack from M. sexta larvae, and that Waldbauer nutritional assays reveal behavioural and physiological counter responses of insects to these plant defenses. [source]


Trypsin enzyme activity during larval development of Litopenaeus vannamei (Boone) fed on live feeds

AQUACULTURE RESEARCH, Issue 5 2002
A C Puello-Cruz
Abstract Larval stages of the Pacific white shrimp, Litopenaeus vannamei (Boone) were fed standard live diets of mixed microalgae from the first to the third protozoea (PZ1 to PZ3), followed by Artemia nauplii until post-larvae 1 (PL1). Trypsin enzyme activity for each larval stage was determined using N -,-p-toluenesulphonyl- l -arginine methyl ester (TAME) as a substrate. Results were expressed as enzyme content to assess ontogenetic changes during larval development. Tissue trypsin content (IU µg,1 DW for each larval stage) was significantly highest at the PZ1 stage and declined through subsequent stages to PL1. This contrasts with previously observed patterns of trypsin development in Litopenaeus setiferus (Linnaeus) and other penaeid genera, which exhibit a peak in trypsin activity at the third protozoea/first mysis (PZ3/M1) larval stage. Litopenaeus vannamei larvae transferred to a diet of Artemia at the beginning of the second protozoea (PZ2) stage were significantly heavier on reaching the first mysis stage (M1) than those fed algae, while survival was not significantly different between treatments. At both PZ2 and PZ3 stages, trypsin content in larvae feeding on Artemia was significantly lower than in those feeding on algae. The rapid decline in trypsin content from PZ1 and the flexible enzyme response from PZ2 suggest that L. vannamei is physiologically adapted to transfer to a more carnivorous diet during the mid-protozoeal stages. [source]


Resistance to Plant Invasion?

BIOTROPICA, Issue 2 2010
A Native Specialist Herbivore Shows Preference for, Higher Fitness on an Introduced Host
ABSTRACT The response of native herbivores to the introduction of a new plant to the community has important implications for plant invasion. Under the Enemy Release Hypothesis introduced species become invasive because of reduced enemy control in the new range, while under the New Association Hypothesis introduced species lack effective defenses against native enemies because they do not share an evolutionary history. I tested the response of a native South-American specialist herbivore Utetheisa ornatrix (Lepidoptera: Arctiidae) to a native (Crotalaria incana) and an introduced host (Crotalaria pallida) (Fabaceae: Papilionoideae). I compared seed predation rates between the two hosts in the field, and I tested preference and performance traits with common garden experiments. Utetheisa ornatrix caused much higher seed predation rates on the introduced host than on the native host. Females also preferred to oviposit on the introduced over the native host. Additionally, larvae feeding on the introduced host had higher fitness (higher pupal weight) than larvae feeding on the native host. I discuss how the response of this specialist herbivore to this introduced host plant contradicts the predictions of the Enemy Release Hypothesis and support the New Association Hypothesis. This study shows that the New Association Hypothesis can also be true for specialist herbivores. Abstract in Portuguese is available at http://www.blackwell-synergy.com/loi/btp [source]


Combined Effects of Host Plant Quality and Predation on a Tropical Lepidopteran: A Comparison between Treefall Gaps and the Understory in Panama

BIOTROPICA, Issue 6 2008
Lora A. Richards
ABSTRACT In tropical forests, light-gaps created from treefalls are a frequent source of habitat heterogeneity. The increase in productivity, through gap formation, can alter food quality, predation and their impact on insect herbivores. We hypothesized that in gaps, herbivores would be less resource-limited and more predator limited, whereas in the understory, we predicted the reverse. In this study, we investigate the combined effects of food quality and predation on the lepidopteran larva Zunacetha annulata feeding on its host plant Hybanthus prunifolius in two habitats; sunny treefall gaps and the shaded understory in Panama. In bioassays, Z. annulata feeding on sun leaves ate 22 percent less leaf area, grew 25 percent faster, and had higher pupal weights than larvae feeding on shade leaves. However, shade leaves had higher nitrogen content and specific leaf area. In gaps, predation was 26.4 percent compared to 13.8 percent in the understory. Larvae on understory plants traveled greater distances and spent more time searching and traveling than larvae on gap plants. These differences in behavior are consistent with lower predation risk and lower quality food in the understory. Using data from bioassays and field experiments we calculated 0.22 percent and 1.02 percent survival to adulthood for larvae in gaps and the understory, respectively. In conclusion, although these habitats were in close proximity, we found that larvae in the understory are more resource-limited and larvae in gaps are more predator limited. [source]