lacZ Transgene (lacz + transgene)

Distribution by Scientific Domains


Selected Abstracts


Frontal nasal prominence expression driven by Tcfap2a relies on a conserved binding site for STAT proteins

DEVELOPMENTAL DYNAMICS, Issue 5 2006
Amy L. Donner
Abstract The AP-2 transcription factor family is linked with development of the head and limbs in both vertebrate and invertebrate species. Recent evidence has also implicated this gene family in the evolution of the neural crest in chordates, a critical step that allowed the development and elaboration of the vertebrate craniofacial skeleton. In mice, the inappropriate embryonic expression of one particular AP-2 gene, Tcfap2a, encoding AP-2,, results in multiple developmental abnormalities, including craniofacial and limb defects. Thus, Tcfap2a provides a valuable genetic resource to analyze the regulatory hierarchy responsible for the evolution and development of the face and limbs. Previous studies have identified a 2-kilobase intronic region of both the mouse and human AP-2, locus that directs expression of a linked LacZ transgene to the facial processes and the distal mesenchyme of the limb bud in transgenic mice. Further analysis identified two highly conserved regions of ,200,400 bp within this tissue-specific enhancer. We have now initiated a transgenic and biochemical analysis of the most important of these highly conserved regions. Our analysis indicates that although the sequences regulating face and limb expression have been integrated into a single enhancer, different cis -acting sequences ultimately control these two expression domains. Moreover, these studies demonstrate that a conserved STAT binding site provides a major contribution to the expression of Tcfap2a in the facial prominences. Developmental Dynamics 235:1358,1370, 2006. © 2006 Wiley-Liss, Inc. [source]


Requirement of TCTG(G/C) Direct Repeats and Overlapping GATA Site for Maintaining the Cardiac-Specific Expression of Cardiac troponin T in Developing and Adult Mice

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 12 2008
Shannon M. Harlan
Transgenic mouse brain shown to the right (top and bottom, dorsal and ventral views, respectively) displays an ectopic expression of LacZ transgene driven by a mutant cardiac troponin T promoter, which contains a 2-bp substitution destroying the critical TCTG(G/C) direct repeats. In contrast, the wild type promoter drives LacZ transgene specifically in the heart (not shown) but not ectopically in the brain shown to the left (top and bottom, dorsal and ventral views, respectively). See Harlan et al., on page 1574, in this issue. [source]


Mutation spectrum in UVB-exposed skin epidermis of Xpa -knockout mice: Frequent recovery of triplet mutations

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2007
Hironobu Ikehata
Abstract Knockout mutations in both alleles of the Xpa gene give rise to a complete deficiency in nucleotide excision repair (NER) in mammalian cells. We used transgenic mice harboring the ,-phage-based lacZ mutational reporter gene to study the effect of Xpa null mutation (Xpa,/,) on damage induction, repair, and mutagenesis in mouse skin epidermis after UVB irradiation. UVB induced equal amounts of cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (64PPs) in mouse skin epidermis of Xpa,/, and wild-type mice. Neither photolesion was removed in the Xpa,/, epidermis by 12 hr after irradiation whereas removal of 64PPs was observed in the epidermis of wild-type mice. Irradiation with 200 and 300 J/m2 UVB increased the lacZ mutant frequency in the epidermis of Xpa,/, mice, but the induced mutant frequencies were not significantly different from those previously determined for wild-type mice. One-hundred lacZ mutants isolated from the UVB-exposed epidermis of Xpa,/, mice were analyzed and compared with mutant sequences previously determined for irradiated wild-type mice. The distribution of the mutations along the lacZ transgene and the preferred dipyrimidine context of the UV-specific mutations were similar in mutants from the Xpa,/, and wild-type mice. The spectra of the mutations in the two genotypes were both highly UV-specific and similar in a dominance of C , T transitions at dipyrimidine sites; however, Xpa,/, mice had a higher frequency than wild-type mice of two-base tandem substitutions, including CC , TT mutations, three-base tandem mutations and double base substitutions that were separated by one unchanged base in a three-base sequence (alternating mutations). These tandem/alternating mutations included a remarkably large number of triplet mutations, a recently reported, novel type of UV-specific mutation, characterized by multiple base substitutions or frameshifts within a three-nucleotide sequence containing a dipyrimidine. We conclude that the triplet mutation is a UV-specific mutation that preferably occurs in NER-deficient genetic backgrounds. Environ. Mol. Mutagen., 2007. © 2006 Wiley-Liss, Inc. [source]


Transgenic strains of the nematode Caenorhabditis elegans as biomonitors of metal contamination

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2000
L. K. Cioci
Abstract Transition metal contamination poses a serious environmental and human health threat. The bioavailability of transition metals in environmental samples can best be assessed with living organisms. A transgenic strain of the free-living soil nematode Caenorhabditis elegans has been engineered for monitoring the bioavailability of metals. A reporter transgene consisting of a fragment of the promoter from the C. elegans metallothionein-2 gene (mtl-2) that controls the transcription of a ,-galactosidase reporter (lacZ) has been integrated into the genome of this organism. By using these transgenic C. elegans, the toxicological response to metals in samples can be quickly measured with a simple histochemical staining assay. The C. elegans that contain the mtl-2:lacZ transgene provide a more sensitive assay of exposure to cadmium, mercury, zinc, and nickel than 24-h LC50 assays or those using nematodes with heat-shock protein,based reporter transgenes. This study demonstrates that C. elegans that contain mtl-2:lacZ transgenes can function as sensitive toxicological indicators of metals. [source]


R6/2 neurons with intranuclear inclusions survive for prolonged periods in the brains of chimeric mice

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 6 2007
Anton Reiner
Abstract The R6/2 mouse possesses mutant exon 1 of human Hdh, and R6/2 mice with 150 CAG repeats show neurological abnormalities by 10 weeks and die by 15 weeks. Few brain abnormalities, however, are evident at death, other than widespread ubiquitinated neuronal intranuclear inclusions (NIIs). We constructed R6/2t+/t, , wildtype (WT) chimeric mice to prolong survival of R6/2 cells and determine if neuronal death and/or neuronal injury become evident with longer survival. ROSA26 mice (which bear a lacZ transgene) were used as WT to distinguish between R6/2 and WT neurons. Chimeric mice consisting partly of R6/2 cells lived longer than pure R6/2 mice (up to 10 months), with the survival proportional to the R6/2 contribution. Genotypically R6/2 cells formed NIIs in the chimeras, and these NIIs grew only slightly larger than in 12-week pure R6/2 mice, even after 10 months. Additionally, neuropil aggregates formed near R6/2 neurons in chimeric mice older than 15 weeks. Thus, R6/2 neurons could survive well beyond 15 weeks in chimeras. Moreover, little neuronal degeneration was evident in either cortex or striatum by routine histological stains. Nonetheless, striatal shrinkage and ventricular enlargement occurred, and striatal projection neuron markers characteristically reduced in Huntington's disease were diminished. Consistent with such abnormalities, cortex and striatum in chimeras showed increased astrocytic glial fibrillary acidic protein. These results suggest that while cortical and striatal neurons can survive nearly a year with nuclear and extranuclear aggregates of mutant huntingtin, such lengthy survival does reveal cortical and striatal abnormality brought on by the truncated mutant protein. J. Comp. Neurol. 505:603,629, 2007. © 2007 Wiley-Liss, Inc. [source]


Transgenic strains of the nematode Caenorhabditis elegans as biomonitors of metal contamination

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2000
L. K. Cioci
Abstract Transition metal contamination poses a serious environmental and human health threat. The bioavailability of transition metals in environmental samples can best be assessed with living organisms. A transgenic strain of the free-living soil nematode Caenorhabditis elegans has been engineered for monitoring the bioavailability of metals. A reporter transgene consisting of a fragment of the promoter from the C. elegans metallothionein-2 gene (mtl-2) that controls the transcription of a ,-galactosidase reporter (lacZ) has been integrated into the genome of this organism. By using these transgenic C. elegans, the toxicological response to metals in samples can be quickly measured with a simple histochemical staining assay. The C. elegans that contain the mtl-2:lacZ transgene provide a more sensitive assay of exposure to cadmium, mercury, zinc, and nickel than 24-h LC50 assays or those using nematodes with heat-shock protein,based reporter transgenes. This study demonstrates that C. elegans that contain mtl-2:lacZ transgenes can function as sensitive toxicological indicators of metals. [source]