Laccase

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Laccase

  • fungal laccase

  • Terms modified by Laccase

  • laccase activity
  • laccase production

  • Selected Abstracts


    Electrochemical Characteristics of Mediated Laccase-Catalysis and Electrochemical Detection of Environmental Pollutants

    ELECTROANALYSIS, Issue 8 2008
    Ying Liu
    Abstract Laccase has been immobilized on the carbon nanotubes modified glassy carbon electrode surface by adsorption. As-prepared laccase retains good electrocatalytic activity to oxygen reduction by using 2,2,-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) as the mediator. It can be used as a biosensor for the determination of catechol with broad linear range. Especially, azide, one of inhibitors of laccase, shows sensitive inhibition to catalytic activity of the laccase modified electrode. In addition, the inhibition by fluoride ions has also been studied. These demonstrate that the as-prepared electrode can be used to detect halide and some the toxic pollutants, e.g., catechol and azide based on catalytic or inhibition reaction of laccase. The simple preparation procedure makes the system can be developed as non-inhibition or inhibition biosensor. [source]


    Carbon Ceramic Electrodes Modified with Laccase from Trametes hirsuta: Fabrication, Characterization and Their Use for Phenolic Compounds Detection

    ELECTROANALYSIS, Issue 9 2007
    Behzad Haghighi
    Abstract Fungal laccase (Lc) from the basidiomycete Trametes hirsuta was immobilized on top of a carbon ceramic electrode using physical absorption. Direct, unmediated heterogeneous electron transfer between Lc and the carbon ceramic electrode (CCE) under aerobic conditions was shown. The bioelectrocatalytic reduction of oxygen on Lc-CCE started at about 430,mV vs. Ag|AgCl|KClsat at pH,3.5 and moved with about 57,mV in the cathodic region per pH unit. The Lc-modified CCE was then used as a biosensing detection element in a single line flow injection system for the amperometric determination of a variety of phenolic substrates of the enzyme. The experimental conditions were studied and optimized for catechol serving as a model compound. Statistical aspects were applied and the sensor characteristics and Michaelis-Menten constants of the investigated phenolic compounds were calculated and compared with those obtained for solid graphite electrodes modified with Trametes hirsuta laccase. The results showed that the CCE based biosensor in comparison with the solid graphite based biosensor offers a lower detection limit, a wider linear dynamic range, and excellent operational stability with no sensor passivation, indicating that the sol,gel lattice improves the electrochemical behavior of the biosensor. [source]


    Bioelectrocatalysis of Oxygen Reduction Reaction by Laccase on Gold Electrodes

    ELECTROANALYSIS, Issue 13-14 2004
    Gautam Gupta
    Abstract Direct electron transfer (DET) reaction of oxygen electroreduction catalyzed by enzyme laccase on monolayer modified gold electrodes was studied. Three different monolayers were investigated, from which 4-aminothiophenol was found to be optimal for the direct electron transfer to take place. The electrocatalytic reduction of the oxygen at the electrode surface was found to depend significantly on the method of immobilization. Fungal laccase from Coriolus hirsitus modified with sodium-periodate demonstrated more anodic onset potential for oxygen reduction than the tree laccase from Rhus vernicifera. Physical immobilization of enzyme did not result in any manifestation of bioelectrocatalytic activity. A maximum anodic shift in reduction potential of 300,mV was observed for fungal laccase covalently coupled on the electrode surface. [source]


    Production of a Laccase and Decrease of the Phenolic Content in Canola Meal during the Growth of the Fungus Pleurotus ostreatus in Solid State Fermentation Processes

    ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 1 2004
    J. Hu
    Abstract Solid state fermentation of canola meal was carried out with the fungus Pleurotus ostreatus DAOM 197961, which is a producer of laccase. The aim of this study was to examine the effects of moisture content, inoculum size, homogenisation of inoculum and particle size of canola meal on the growth of the fungus, the production of a laccase and the decrease of the content of sinapic acid esters (SAE) in a solid state process. The results showed that the optimum moisture content, which was varied in the media between 50% and 75%, for the growth and enzyme production was 60%. The initial rate of SAE content decrease was faster in the media with 70% and 75% moisture than in those with lower moisture levels. In the study of the effects of inoculum concentration in the range of 1.1 mg to 5.5 mg/g of the medium, it was found that larger amounts of biomass and enzyme were produced in the media with inoculum concentrations from 1.1 mg to 3.3 mg/g of the medium than in the media with a higher inoculum concentration. The final and approximately the same concentrations of SAE were reached at the same time regardless of the inoculum concentration. Considering that the fungus formed pellets under the conditions at which it was grown during the inoculum preparation, it was necessary to break them by homogenisation prior to their utilisation as an inoculum. The homogenisation was carried out during a period between 15s and 200s. Although higher biomass concentrations and enzyme activities were obtained in the media which were inoculated with the inoculum homogenised for 15s and 30s, the maximum enzyme activities and biomass concentrations were reached in the media inoculated with the inoculum, which was homogenised for 120s and 200s. The time of inoculum homogenisation did not influence the kinetics of the SAE decrease. When the effects of the particle size of canola meal on the process were studied, it was found that larger particles of the meal in the solid media were more favourable for the production of the biomass and enzyme, and for a faster decrease of the SAE content than those of smaller sizes. From the obtained results it can be concluded that the tested variables have a significant influence on the growth of the fungus Pleurotus ostreatus DAOM 197961, the production of laccase and the decrease of the SAE content in canola meal. The data could be useful for the development of a solid state process for the production of laccase and for the decrease of the phenolics content in canola meal. [source]


    Role of laccase in the biology and virulence of Cryptococcus neoformans

    FEMS YEAST RESEARCH, Issue 1 2004
    Xudong Zhu
    Abstract Laccase is an important virulence factor for the human pathogen, Cryptococcus neoformans. In this review, we examine the structural, biological and genetic features of the enzyme and its role in the pathogenesis of cryptococcosis. Laccase is expressed in C. neoformans as a cell wall enzyme that possesses a broad spectrum of activity oxidizing both polyphenolic compounds and iron. Two paralogs, CNLAC1 and CNLAC2, are present in the fungus, of which the first one expresses the dominant enzyme activity under glucose starvation conditions. Regulation of the enzyme is in response to various environmental signals including nutrient starvation, the presence of multivalent cations and temperature stress, and is mediated through multiple signal transduction pathways. Study of the function and regulation of this important virulence factor has led to further understanding of mechanisms of fungal pathogenesis and the regulation of stress response in the host cell environment. [source]


    Stable ,Floating' Air Diffusion Biocathode Based on Direct Electron Transfer Reactions Between Carbon Particles and High Redox Potential Laccase

    FUEL CELLS, Issue 4 2010
    S. Shleev
    Abstract We report on the assembly and characterisation of a high potential, stable, mediator-less and cofactor free biocathode based on a fungal laccase (Lc), adsorbed on highly dispersed carbonaceous materials. First, the stability and activity of Trametes hirsuta Lc immobilised on different carbon particles were studied and compared to the solubilised enzyme. Based on the experimental results and a literature analysis, the carbonaceous material BM-4 was chosen to design efficient and stable biocatalysts for the production of a ,floating' air diffusion Lc-based biocathode. Voltammetric characteristics and operational stability of the biocathode were investigated. The current density of oxygen reduction at the motionless biocathode in a quiet, air saturated citrate buffer (100,mM, pH 4.5, 23,°C) reached values as high as 0.3,mA,cm,2 already at 0.7,V versus NHE. The operational stability of the biocathode depended on the current density of the device. For example, at low current density (20,,A,cm,2), the biocathode lost only 5× of its initial power after 1 month of continuous operation. However, when the device was polarised at 150,mV it lost more than 32× of its initial power in just 10,min. We also found that co-immobilisation of Lc and peroxidase on highly dispersed carbon materials could protect the biocatalyst from rapid inactivation by hydrogen peroxide produced during electrocatalytic reactions at high-current densities. [source]


    Synthetic Applications of Laccase in Green Chemistry

    ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 9 2009
    Suteera Witayakran
    Abstract Laccases (benzenediol:oxygen oxidoreductase, EC 1.10.3.2), multi-copper-containing oxidoreductase enzymes, are able to catalyze the oxidation of various low-molecular weight compounds, specifically, phenols and anilines, while concomitantly reducing molecular oxygen to water. Because of their high stability, selectivity for phenolic substructures, and mild reaction conditions, laccases are attractive for fine chemical synthesis. This review provides a discussion of the recent applications of this interesting enzyme in synthetic chemistry, including laccase and laccase-mediator catalyzed reactions. In addition, the review also includes a brief discussion of the distribution of laccase in nature, enzyme structure, and the catalytic mechanism which are of relevance to their applications as biocatalysts. [source]


    Laccase from Basidiomycetous Fungus Catalyzes the Synthesis of Substituted 5-Deaza-10-oxaflavins via a Domino Reaction

    ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 4 2009
    Mazaahir Kidwai
    Abstract The present investigation provides a simple and convenient route for the synthesis of substituted 5-deaza-10-oxaflavins owing to their importance as probable redox coenzymes. The reaction of ,,,-unsaturated derivatives of barbituric acid and dimedone with catechol or 1,4-hydroquinones was catalyzed using laccase in aqueous medium. Quinones, generated in situ by the oxidation of the corresponding catechol or 1,4-hydroquinones, underwent a domino reaction with chalcones to produce 5-deaza-10-oxaflavins and tetrahydroxanthen-1-ones. [source]


    Optimization of extraction of bulk enzymes from spent mushroom compost

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 7 2003
    Avneesh D Singh
    Abstract The profiling of ligninase, hemicellulase and cellulase of Pleurotus sajor-caju after inoculation of spawn in bags containing sawdust was done at monthly intervals for a period of 6 months. Xylanase (EC 3.2.1.8) was produced throughout the 6 months studied with the productivity range from 5.60 to 7.51 U g,1. Cellulase (EC 3.2.1.4) and ,-glucosidase (EC 3.2.1.21) productivities were highest at 4 months, producing 3.31 U g,1 and 121.13 U g,1 respectively. Laccase (EC 1.10.3.2) productivity was highest at 2 months with a value of 7.59 U g,1. Lignin peroxidase (EC 1.11.1.14) productivity was highest at 5 months with a value of 206.20 U g,1. Total soluble proteins were highest at 4 months with a value of 0.139 mg cm,3. The profiling of lignin peroxidase in 5-month-old spent mushroom compost was monitored over a period of 10 months. It was observed that lignin peroxidase was produced throughout the period but productivity was variable. The average lignin peroxidase productivity ranged from 30 to 110 U g,1. The activities of the enzymes extracted in tap water at pH 8.4 were comparable to that extracted in 50 mmol sodium citrate buffer at pH 4.8 and distilled water at pH 5.2 at 4 °C using an incubator shaker at 200 rpm for 18 h. The optimum extraction time was 1 h using an incubator shaker at 4 °C. When an incubator shaker was used, there was no significant difference in the recovery of xylanase, cellulase and laccase at different pH values at 4 °C and 28 °C. No significant difference was observed in the recovery of ,-glucosidase using an incubator shaker at different pH values at 4 °C although the enzyme recovery was slightly higher at pH 8.12, with a value of 29.27 U g,1. The optimum extraction of ,-glucosidase was at pH 4 at room temperature using an incubator shaker. For the lignin peroxidase enzyme, the optimum pH for extraction was 6 at 4 °C and pH 7 at room temperature using an incubator shaker at 200 rpm for 1 h. Homogenization for 8 min at 8000 rpm using tap water at pH 4 had an advantage over the use of the incubator shaker for the extraction as high titers of enzymes were recovered. Copyright © 2003 Society of Chemical Industry [source]


    Hydrogen peroxide concentration measured in cultivation substrates during growth and fruiting of the mushrooms Agaricus bisporus and Pleurotus spp.

    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 7 2007
    Jean-Michel Savoie
    Abstract Hydrogen peroxide is suspected of being highly implicated in mushroom nutrition and in substrate bleaching during cultivation. The parameters for measuring H2O2 in compost samples were examined and the methodology was applied to samples from both compost colonized by cultivars and wild isolates of Agaricus bisporus, and wheat straw or coffee pulp colonized by Pleurotus spp. Laccase and peroxidase activities were also measured. H2O2 concentration measured after heating at 80 °C for inactivating laccases and peroxidases was probably both H2O2 pre-existing in the compost and H2O2 generated from quinones and active oxygen species. This potential H2O2 concentration increased during the vegetative growth for all the strains, in agreement with a direct relationship between H2O2 concentration and active biomass of A. bisporus or Pleurotus spp. in their cultivation substrates. Correlations were observed between H2O2 concentration and manganese peroxidase activity in cultivation substrates at the stage of primordia formation. At this stage of development, H2O2 generation via biotic or abiotic mechanisms should be an important physiological trait of mushrooms. Copyright © 2007 Society of Chemical Industry [source]


    Nonisothermal Bioreactors in the Treatment of Vegetation Waters from Olive Oil: Laccase versus Syringic Acid as Bioremediation Model

    BIOTECHNOLOGY PROGRESS, Issue 3 2005
    Angelina Attanasio
    Laccase from Trametes versicolor was immobilized by diazotization on a nylon membrane grafted with glycidil methacrylate, using phenylenediamine as spacer and coupling agent. The behavior of these enzyme derivatives was studied under isothermal and nonisothermal conditions by using syringic acid as substrate, in view of the employment of these membranes in processes of detoxification of vegetation waters from olive oil mills. The pH and temperature dependence of catalytic activity under isothermal conditions has shown that these membranes can be usefully employed under extreme pH and temperatures. When employed under nonisothermal conditions, the membranes exhibited an increase of catalytic activity linearly proportional to the applied transmembrane temperature difference. Percentage activity increases ranging from 62% to 18% were found in the range of syringic acid concentration from 0.02 to 0.8 mM, when a difference of 1°C was applied across the catalytic membrane. Because the percentage activity increase is strictly related to the reduction of the production times, the technology of nonisothermal bioreactors has been demonstrated to be an useful tool also in the treatment of vegetation waters from olive oil mills. [source]


    Modification of High Lignin Content Kraft Pulps with Laccase to Improve Paper Strength Properties.

    BIOTECHNOLOGY PROGRESS, Issue 1 2004

    Laccase was reacted with gallic acid in the presence of a high-, (91) kraft pulp. The result was a modified pulp with 34%, 20%, and 72% improvements in burst, tensile, and wet tensile strength compared to untreated control samples. Fully bleached pulps were not responsive to the laccase treatment, indicating lignin was the major target for the fiber modification. The results indicate that the strength increases were a combined effect of improvements of hydrogen bonding between fibers and creation of phenoxy radical cross-links within the sheet. [source]


    Mechanism of Laccase,TEMPO-Catalyzed Oxidation of Benzyl Alcohol

    CHEMCATCHEM, Issue 7 2010
    Sander
    Abstract The oxidation of benzyl alcohol by air, catalyzed by the organocatalyst TEMPO and the enzyme laccase has been investigated. To establish the kinetically significant pathways and corresponding kinetic parameters, a series of experiments is conducted with synthesized stable oxidized and reduced forms of the organocatalyst, the oxoammonium cation, and hydroxylamine. The time course of TEMPO and its oxidized and reduced derivatives is monitored off line by a combination of GC analysis, UV/Vis spectroscopy, EPR spectroscopy, and FTIR spectroscopy. TEMPO is found to be regenerated through noncatalyzed comproportionation of the oxoammonium cation with hydroxylamine. A kinetic model is presented based on the experimentally determined kinetically significant pathways. The time dependences of the concentrations of the three redox states of TEMPO and benzyl alcohol are adequately described by the model. The results provide new leads for the development of a practical process for a combined laccase,TEMPO-catalyzed selective oxidation of alcohols. [source]


    One-Pot Synthesis of 1,4-Naphthoquinones and Related Structures with Laccase.

    CHEMINFORM, Issue 38 2007
    Suteera Witayakran
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source]


    Study on Glucose Biofuel Cells Using an Electrochemical Noise Device

    ELECTROANALYSIS, Issue 14 2008
    Yueming Tan
    Abstract An electrochemical noise (ECN) device was utilized for the first time to study and characterize a glucose/O2 membraneless biofuel cell (BFC) and a monopolar glucose BFC. In the glucose/O2 membraneless BFC, ferrocene (Fc) and glucose oxidase (GOD) were immobilized on a multiwalled carbon nanotubes (MWCNTs)/Au electrode with a gelatin film at the anode; and laccase (Lac) and an electron mediator, 2,2,-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS), were immobilized on a MWCNTs/Au electrode with polypyrrole at the cathode. This BFC was performed in a stirred acetate buffer solution (pH,5.0) containing 40,mmol/L glucose in air, with a maximum power density of 8,,W/cm2, an open-circuit cell voltage of 0.29,V, and a short-circuit current density of 85,,A/cm2, respectively. The cell current at the load of 100,k, retained 78.9% of the initial value after continuous discharging for 15,h in a stirred acetate buffer solution (pH,5.0) containing 40,mmol/L glucose in air. The performance decrease of the BFC resulted mainly from the leakage of the ABTS mediator immobilized at the cathode, as revealed by the two-channel quartz crystal microbalance technique. In addition, a monopolar glucose BFC was performed with the same anode as that in the glucose/O2 membraneless BFC in a stirred phosphate buffer solution (pH,7.0) containing 40,mmol/L glucose, and a carbon cathode in Nafion-membrane-isolated acidic KMnO4, with a maximum power density of 115,,W/cm2, an open-circuit cell voltage of 1.24,V, and a short-circuit current density of 202,,A/cm2, respectively, which are superior to those of the glucose/O2 membraneless BFC. A modification of the anode with MWCNTs for the monopolar glucose BFC increased the maximum power density by a factor of 1.8. The ECN device is highly recommended as a convenient, real-time and sensitive technique for BFC studies. [source]


    Electrochemical Characteristics of Mediated Laccase-Catalysis and Electrochemical Detection of Environmental Pollutants

    ELECTROANALYSIS, Issue 8 2008
    Ying Liu
    Abstract Laccase has been immobilized on the carbon nanotubes modified glassy carbon electrode surface by adsorption. As-prepared laccase retains good electrocatalytic activity to oxygen reduction by using 2,2,-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) as the mediator. It can be used as a biosensor for the determination of catechol with broad linear range. Especially, azide, one of inhibitors of laccase, shows sensitive inhibition to catalytic activity of the laccase modified electrode. In addition, the inhibition by fluoride ions has also been studied. These demonstrate that the as-prepared electrode can be used to detect halide and some the toxic pollutants, e.g., catechol and azide based on catalytic or inhibition reaction of laccase. The simple preparation procedure makes the system can be developed as non-inhibition or inhibition biosensor. [source]


    Carbon Ceramic Electrodes Modified with Laccase from Trametes hirsuta: Fabrication, Characterization and Their Use for Phenolic Compounds Detection

    ELECTROANALYSIS, Issue 9 2007
    Behzad Haghighi
    Abstract Fungal laccase (Lc) from the basidiomycete Trametes hirsuta was immobilized on top of a carbon ceramic electrode using physical absorption. Direct, unmediated heterogeneous electron transfer between Lc and the carbon ceramic electrode (CCE) under aerobic conditions was shown. The bioelectrocatalytic reduction of oxygen on Lc-CCE started at about 430,mV vs. Ag|AgCl|KClsat at pH,3.5 and moved with about 57,mV in the cathodic region per pH unit. The Lc-modified CCE was then used as a biosensing detection element in a single line flow injection system for the amperometric determination of a variety of phenolic substrates of the enzyme. The experimental conditions were studied and optimized for catechol serving as a model compound. Statistical aspects were applied and the sensor characteristics and Michaelis-Menten constants of the investigated phenolic compounds were calculated and compared with those obtained for solid graphite electrodes modified with Trametes hirsuta laccase. The results showed that the CCE based biosensor in comparison with the solid graphite based biosensor offers a lower detection limit, a wider linear dynamic range, and excellent operational stability with no sensor passivation, indicating that the sol,gel lattice improves the electrochemical behavior of the biosensor. [source]


    Amperometric Detection of Catecholamine Neurotransmitters Using Electrocatalytic Substrate Recycling at a Laccase Electrode

    ELECTROANALYSIS, Issue 2 2005
    Yvonne Ferry
    Abstract An enzyme electrode based on the coimmobilization of an osmium redox polymer and laccase on glassy carbon electrodes has been applied to ultra sensitive amperometric detection of the catecholamine neurotransmitters dopamine, epinephrine and norepinephrine, resulting in nanomolar detection limits, as low as 4,nM for dopamine. The sensitivity of the electrode is due to signal amplification via oxidation of the catecholamine by the immobilized laccase, which is regenerated by concomitant reduction of oxygen to water, coupled to the electrocatalytic re-reduction of the oxidized catecholamine by the osmium redox complex: electrocatalytic substrate recycling. In addition because the sensor can be operated in reductive mode at ,0.2,V (vs. Ag/AgCl), noise and interferences are diminished. Combined with its high sensitivity this enzyme electrode also exhibited excellent selectivity allowing the detection of catecholamines in the presence of ascorbic acid. However, differentiation between the current responses achieved for the three catecholamines is not possible. The effective mode of constant recycling, resulting in amplification of the current response, of the laccase enzyme electrode sensor combined with the inherent advantages of using electrochemical techniques holds great promise for the future of catecholamine detection and monitoring. [source]


    Bioelectrocatalysis of Oxygen Reduction Reaction by Laccase on Gold Electrodes

    ELECTROANALYSIS, Issue 13-14 2004
    Gautam Gupta
    Abstract Direct electron transfer (DET) reaction of oxygen electroreduction catalyzed by enzyme laccase on monolayer modified gold electrodes was studied. Three different monolayers were investigated, from which 4-aminothiophenol was found to be optimal for the direct electron transfer to take place. The electrocatalytic reduction of the oxygen at the electrode surface was found to depend significantly on the method of immobilization. Fungal laccase from Coriolus hirsitus modified with sodium-periodate demonstrated more anodic onset potential for oxygen reduction than the tree laccase from Rhus vernicifera. Physical immobilization of enzyme did not result in any manifestation of bioelectrocatalytic activity. A maximum anodic shift in reduction potential of 300,mV was observed for fungal laccase covalently coupled on the electrode surface. [source]


    Decolorization of simulated textile dye baths by crude laccases from Trametes hirsuta and Cerrena unicolor

    ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 3 2010
    Ulla Moilanen
    Abstract In this study crude laccases from the white-rot fungi Cerrena unicolor and Trametes hirsuta were tested for their ability to decolorize simulated textile dye baths. The dyes used were Remazol Brilliant Blue R (RBBR) (100,mg/L), Congo Red (12.5,mg/L), Lanaset Grey (75,mg/L) and Poly R-478 (50,mg/L). The effect of redox mediators on dye decolorization by laccases was also assessed. C. unicolor laccase was able to decolorize all the dyes tested. It was especially effective towards Congo Red and RBBR with 91 and 80% of color removal in 19.5,h despite the fact that simulated textile dye baths were used. Also Poly R-478 and Lanaset Grey were partially decolorized (69 and 48%, respectively). C. unicolor laccase did not need any mediators for removing the dyes. However, T. hirsuta laccase was only able to decolorize simulated Congo Red and RBBR dye baths (91 and 45%, respectively) in 19.5,h without mediators. When using mediators the decolorization capability was enhanced substantially, e.g. Poly R-478 was decolorized by 78% in 25.5,h. On the whole, both laccases showed potential to be used in industrial applications. [source]


    White-rot fungi combined with lignite granules and lignitic xylite to decolorize textile industry wastewater

    ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 1 2010
    Ulrike Böhmer
    Abstract The feasibility of using immobilized fungi to decolorize textile industry wastewater containing dyes was examined in experiments with: two species of white-rot fungi (a Marasmius species from Indonesia, which produces copious biomass, and Trametes hirsuta, which produces high levels of laccase); two types of lignite products as adsorbents and solid substrates (lignitic xylite and lignite granules); and four simulated wastewaters, each containing a different kinds of reactive textile azo dye. The growth, extracellular enzyme production, dye degradation and dye absorption parameters afforded by each permutation of fungus, substrate and dye were then measured. Both fungal species grew poorly on xylite, but much better on lignite granules. Marasmius sp. produced up to 67,U/L laccase on lignite granules, but just 10,U/L on xylite, and no other detectable extracellular enzymes. T. hirsuta produced 1343,U/L laccase and up to 12,U/L unspecific peroxidase when immobilized on lignite granules, and 898,U/L laccase with 14,U/L unspecific peroxidase when immobilized on xylite. The amount of color lost from the dye solutions depended on both the type of dye and the enzyme levels in the fermenter. [source]


    Towards Higher Laccase Activities Produced by Aquatic Ascomycetous Fungi Through Combination of Elicitors and an Alternative Substrate

    ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 3 2008
    C. Junghanns
    Abstract Laccases are versatile biocatalysts with various potential biotechnological applications, e.g. the treatment of industrial waste waters, the detoxification of environmental pollutants, or the functionalization of renewable polymeric materials. Central composition experimental design and response surface methodology was applied to optimize the production of laccase by the aquatic ascomycetous fungi, Phoma sp. UHH 5-1-03 and Coniothyrium sp.,Kl-S5, in shake flasks. A complex plant-based medium (tomato juice) and two elicitors (Remazol Brilliant Blue R [RBBR] and CuSO4) were tested in combination at three concentrations. The highest laccase activity of 6322,±,403,U/L was achieved on day,9 for Phoma sp. Coniothyrium sp. exerted a maximum laccase activity of 3035,±,111 U/L on day,4. Optimal conditions were 30,% tomato juice and 450,mg/L RBBR for both strains. A concentration of 250,,M CuSO4 led to highest laccase activities in cultures of Coniothyrium sp., and 50,,M CuSO4 was most effective for Phoma sp. A remarkable synergistic effect of tomato juice and RBBR on laccase production was observed for both strains. The upscaling potential of the optimal induction conditions was demonstrated in a lab-scale fermenter which resulted in maximum activities of 11030,±,177,U/L on day,6 for Phoma sp. and 11530,±,161,U/L on day,9 for Coniothyrium sp. This study therefore presents a promising alternative for laccase production in ascomycetes based on a cheap complex substrate in combination with two elicitors. [source]


    Production of a Laccase and Decrease of the Phenolic Content in Canola Meal during the Growth of the Fungus Pleurotus ostreatus in Solid State Fermentation Processes

    ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 1 2004
    J. Hu
    Abstract Solid state fermentation of canola meal was carried out with the fungus Pleurotus ostreatus DAOM 197961, which is a producer of laccase. The aim of this study was to examine the effects of moisture content, inoculum size, homogenisation of inoculum and particle size of canola meal on the growth of the fungus, the production of a laccase and the decrease of the content of sinapic acid esters (SAE) in a solid state process. The results showed that the optimum moisture content, which was varied in the media between 50% and 75%, for the growth and enzyme production was 60%. The initial rate of SAE content decrease was faster in the media with 70% and 75% moisture than in those with lower moisture levels. In the study of the effects of inoculum concentration in the range of 1.1 mg to 5.5 mg/g of the medium, it was found that larger amounts of biomass and enzyme were produced in the media with inoculum concentrations from 1.1 mg to 3.3 mg/g of the medium than in the media with a higher inoculum concentration. The final and approximately the same concentrations of SAE were reached at the same time regardless of the inoculum concentration. Considering that the fungus formed pellets under the conditions at which it was grown during the inoculum preparation, it was necessary to break them by homogenisation prior to their utilisation as an inoculum. The homogenisation was carried out during a period between 15s and 200s. Although higher biomass concentrations and enzyme activities were obtained in the media which were inoculated with the inoculum homogenised for 15s and 30s, the maximum enzyme activities and biomass concentrations were reached in the media inoculated with the inoculum, which was homogenised for 120s and 200s. The time of inoculum homogenisation did not influence the kinetics of the SAE decrease. When the effects of the particle size of canola meal on the process were studied, it was found that larger particles of the meal in the solid media were more favourable for the production of the biomass and enzyme, and for a faster decrease of the SAE content than those of smaller sizes. From the obtained results it can be concluded that the tested variables have a significant influence on the growth of the fungus Pleurotus ostreatus DAOM 197961, the production of laccase and the decrease of the SAE content in canola meal. The data could be useful for the development of a solid state process for the production of laccase and for the decrease of the phenolics content in canola meal. [source]


    Biochemical and molecular characterization of a laccase from the edible straw mushroom, Volvariella volvacea

    FEBS JOURNAL, Issue 2 2004
    Shicheng Chen
    We have isolated a laccase (lac1) from culture fluid of Volvariella volvacea, grown in a defined medium containing 150 µm CuSO4, by ion-exchange and gel filtration chromatography. Lac1 has a molecular mass of 58 kDa as determined by SDS/PAGE and an isoelectric point of 3.7. Degenerate primers based on the N-terminal sequence of purified lac1 and a conserved copper-binding domain were used to generate cDNA fragments encoding a portion of the lac1 protein and RACE was used to obtain full-length cDNA clones. The cDNA of lac1 contained an ORF of 1557 bp encoding 519 amino acids. The amino acid sequence from Ala25 to Asp41 corresponded to the N-terminal sequence of the purified protein. The first 24 amino acids are presumed to be a signal peptide. The expression of lac1 is regulated at the transcription level by copper and various aromatic compounds. RT-PCR analysis of gene transcription in fungal mycelia grown on rice-straw revealed that, apart from during the early stages of substrate colonization, lac1 was expressed at every stage of the mushroom developmental cycle defined in this study, although the levels of transcription varied considerably depending upon the developmental phase. Transcription of lac1 increased sharply during the latter phase of substrate colonization and reached maximum levels during the very early stages (primordium formation, pinhead stage) of fruit body morphogenesis. Gene expression then declined to ,,20,30% of peak levels throughout the subsequent stages of sporophore development. [source]


    First evidence of catalytic mediation by phenolic compounds in the laccase-induced oxidation of lignin models

    FEBS JOURNAL, Issue 17 2003
    Francesca D'Acunzo
    The sulfonephthalein indicator, phenol red, exhibits an unusually slow rate of oxidation by laccase from Poliporus pinsitus, in spite of the fact that it is a phenol and therefore a natural substrate for this phenoloxidase enzyme. Nevertheless, after prolonged exposure to laccase (24 h) phenol red is oxidized by more than 90%. We found that phenol red, which can be oxidatively converted into a resonance-stabilized phenoxy radical, performs as a mediator in the laccase-catalyzed oxidation of a nonphenolic substrate (4-methoxybenzyl alcohol) and also of a hindered phenol (2,4,6-tri- tert -butylphenol). In particular, phenol red was found to be at least 10 times more efficient than 3-hydroxyanthranilate (a reported natural phenolic mediator of laccase) in the oxidation of 4-methoxybenzyl alcohol. Other phenols, which do not bear structural analogies to phenol red, underwent rapid degradation and did not perform as laccase mediators. On the other hand, several variously substituted sulfonephthaleins, of different pK2 values, mediated the laccase catalysis, the most efficient being dichlorophenol red, which has the lowest pK2 of the series. The mediating efficiency of phenol red and dichlorophenol red was found to be pH dependent, as was their oxidation Ep value (determined by cyclic voltammetry). We argue that the relative abundance of the phenoxy anion, which is easier to oxidize than the protonated phenol, may be one of the factors determining the efficiency of a phenolic mediator, together with its ability to form relatively stable oxidized intermediates that react with the desired substrate before being depleted in undesired routes. [source]


    Oxidation of phenols by laccase and laccase-mediator systems

    FEBS JOURNAL, Issue 21 2002
    Solubility, steric issues
    To investigate how solubility and steric issues affect the laccase-catalysed oxidation of phenols, a series of oligomeric polyphenol compounds, having increasing size and decreasing solubility in water, was incubated with laccase. The extent of substrate conversion, and the nature of the products formed in buffered aqueous solutions, were compared to those obtained in the presence of an organic cosolvent, and also in the presence of two mediating species, i.e. N -hydroxyphthalimide (HPI) and 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO). This approach showed not only an obvious role of solubility, but also a significant role of the dimension of the substrate upon the enzymatic reactivity. In fact, reactivity decreases as substrate size increases even when solubility is enhanced by a cosolvent. This effect may be ascribed to limited accessibility of encumbered substrates to the enzyme active site, and can be compensated through the use of the appropriate mediator. While TEMPO was highly efficient at enhancing the reactivity of large, less soluble substrates, HPI proved less effective. In addition, whereas the laccase/HPI system afforded the same products as laccase alone, the use of TEMPO provided a different product with high specificity. These results offer the first evidence of the role of ,oxidation shuttles' that the mediators of laccase may have, but also suggest two promising routes towards an environmentally friendly process for kraft pulp bleaching: (a) the identification of mediators which, once oxidized by laccase, are able to target strategic functional groups present in lignin, and (b) the introduction of those strategic functional groups in an appropriate pretreatment. [source]


    Molecular cloning of the cDNA encoding laccase from Pycnoporus cinnabarinus I-937 and expression in Pichia pastoris

    FEBS JOURNAL, Issue 6 2000
    Ludovic Otterbein
    Laccases are multicopper-containing enzymes which catalyse the oxidation of phenolic and nonphenolic compounds with the concomitant reduction of molecular oxygen. In this study, a full-length cDNA coding for laccase (lac1) from Pycnoporus cinnabarinus I-937 was isolated and characterized. The corresponding open reading frame is 1557 nucleotides long and encodes a protein of 518 amino acids. The cDNA encodes a precursor protein containing a 21 amino-acid signal sequence corresponding to a putative signal peptide. The deduced amino-acid sequence of the encoded protein was similar to that of other laccase proteins, with the residues involved in copper coordination sharing the greatest extent of similarity. The cDNA encoding for laccase was placed under the control of the alcohol oxidase (Aox 1) promoter and expressed in the methylotropic yeast Pichia pastoris. The laccase leader peptide, as well as the Saccharomyces cerevisiae,-factor signal peptide, efficiently directed the secretion into the culture medium of laccase in an active form. Moreover, the laccase activity was directly detected in plates. The identity of the recombinant product was further confirmed by protein immunoblotting. The expected molecular mass of the mature protein is 81 kDa. However, the apparent molecular mass of the recombinant protein is 110 k Da, thus suggesting that the protein expressed in P. pastoris may be hyperglycosylated. [source]


    Role of laccase in the biology and virulence of Cryptococcus neoformans

    FEMS YEAST RESEARCH, Issue 1 2004
    Xudong Zhu
    Abstract Laccase is an important virulence factor for the human pathogen, Cryptococcus neoformans. In this review, we examine the structural, biological and genetic features of the enzyme and its role in the pathogenesis of cryptococcosis. Laccase is expressed in C. neoformans as a cell wall enzyme that possesses a broad spectrum of activity oxidizing both polyphenolic compounds and iron. Two paralogs, CNLAC1 and CNLAC2, are present in the fungus, of which the first one expresses the dominant enzyme activity under glucose starvation conditions. Regulation of the enzyme is in response to various environmental signals including nutrient starvation, the presence of multivalent cations and temperature stress, and is mediated through multiple signal transduction pathways. Study of the function and regulation of this important virulence factor has led to further understanding of mechanisms of fungal pathogenesis and the regulation of stress response in the host cell environment. [source]


    Stable ,Floating' Air Diffusion Biocathode Based on Direct Electron Transfer Reactions Between Carbon Particles and High Redox Potential Laccase

    FUEL CELLS, Issue 4 2010
    S. Shleev
    Abstract We report on the assembly and characterisation of a high potential, stable, mediator-less and cofactor free biocathode based on a fungal laccase (Lc), adsorbed on highly dispersed carbonaceous materials. First, the stability and activity of Trametes hirsuta Lc immobilised on different carbon particles were studied and compared to the solubilised enzyme. Based on the experimental results and a literature analysis, the carbonaceous material BM-4 was chosen to design efficient and stable biocatalysts for the production of a ,floating' air diffusion Lc-based biocathode. Voltammetric characteristics and operational stability of the biocathode were investigated. The current density of oxygen reduction at the motionless biocathode in a quiet, air saturated citrate buffer (100,mM, pH 4.5, 23,°C) reached values as high as 0.3,mA,cm,2 already at 0.7,V versus NHE. The operational stability of the biocathode depended on the current density of the device. For example, at low current density (20,,A,cm,2), the biocathode lost only 5× of its initial power after 1 month of continuous operation. However, when the device was polarised at 150,mV it lost more than 32× of its initial power in just 10,min. We also found that co-immobilisation of Lc and peroxidase on highly dispersed carbon materials could protect the biocatalyst from rapid inactivation by hydrogen peroxide produced during electrocatalytic reactions at high-current densities. [source]


    On the Mechanism of Biotransformation of the Anthraquinonic Dye Acid Blue 62 by Laccases

    ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 11-12 2009
    Luciana Pereira
    Abstract We used the recombinant CotA-laccase from the bacterium Bacillus subtilis to investigate the biotransformation of the commercial anthraquinonic dye Acid Blue 62. Kinetics of dye biotransformation at pH,6 follow a Michaelis,Menten model. NMR and several MS techniques allowed the identification of intermediates and final products of the enzymatic biotransformation. The main final product obtained, 1-[(4-amino-9,10-dioxo-3-sulfo-9,10-dihydroanthracen-1-yl)diazenyl]-4-cyclohexylamino-9,10-dioxo-9,10-dihydroanthracene-2-sulfonic acid, is formed through the creation of an azo link and has been previously identified as an intermediate compound in the biodegradation of Acid Blue 62 by crude fungal preparations. The identification of 1,4-diamino-9,10-dioxo-3-sulfo-9,10-dihydroanthracene-2-sulfonic acid and of cyclohexanone, in reaction mixtures with CotA-laccase and also its presence in reactions performed with the LAC3 laccase from the fungus Trametes sp. C30, suggest the occurrence of coupling reactions between the intermediate products of dye oxidation. Based on these results, we propose a mechanistic pathway for the biotransformation of Acid Blue 62 by laccases. A bioassay based on the inhibitory effects of the dye and its enzymatic products on the growth of Saccharomyces cerevisiae shows the importance of laccases in reducing dye toxicity. [source]