Home About us Contact | |||
L-type Calcium Current (l-type + calcium_current)
Selected AbstractsInflux of calcium through L-type calcium channels in early postnatal regulation of chloride transporters in the rat hippocampusDEVELOPMENTAL NEUROBIOLOGY, Issue 13 2009Jennifer G. Bray Abstract During the early postnatal period, GABAB receptor activation facilitates L-type calcium current in rat hippocampus. One developmental process that L-type current may regulate is the change in expression of the K+Cl, co-transporter (KCC2) and N+K+2Cl, co-transporter (NKCC1), which are involved in the maturation of the GABAergic system. The present study investigated the connection between L-type current, GABAB receptors, and expression of chloride transporters during development. The facilitation of L-type current by GABAB receptors is more prominent in the second week of development, with the highest percentage of cells exhibiting facilitation in cultures isolated from 7 day old rats (37.5%). The protein levels of KCC2 and NKCC1 were investigated to determine the developmental timecourse of expression as well as expression following treatment with an L-type channel antagonist and a GABAB receptor agonist. The time course of both chloride transporters in culture mimics that seen in hippocampal tissue isolated from various ages. KCC2 levels increased drastically in the first two postnatal weeks while NKCC1 remained relatively stable, suggesting that the ratio of the chloride transporters is important in mediating the developmental change in chloride reversal potential. Treatment of cultures with the L-type antagonist nimodipine did not affect protein levels of NKCC1, but significantly decreased the upregulation of KCC2 during the first postnatal week. In addition, calcium current facilitation occurs slightly before the large increase in KCC2 expression. These results suggest that the expression of KCC2 is regulated by calcium influx through L-type channels in the early postnatal period in hippocampal neurons. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009 [source] Effects of labedipinedilol-A, third-generation dihydropyridine-type calcium blocker, on ouabain-induced arrhythmiaDRUG DEVELOPMENT RESEARCH, Issue 1 2008Jhy-Chong Liang Abstract Labedipinedilol-A, a novel dihydropyridine-type calcium antagonist with ,/,-adrenoceptor blocking properties, has been reported to produce a cardioprotective effect against ischemia reperfusion injury in rats. We investigated the protective effects of labedipinedilol-A on ouabain-induced tonotropy and arrhythmias in isolated whole atria, and using patch-clamp techniques to study the underlying mechanism of its antiarrhythmic activity on isolated cardiac myocytes. Labedipinedilol-A (10,µM) suppressed the tonotropic effect of ouabain significantly and prolonged the onset time of extra-systole (arrhythmia) induced by ouabain in isolate atria. In the voltage-clamp study, labedipinedilol-A (1,100,µM) reduced the peak amplitude of sodium inward current (INa) and L-type calcium current (ICa-L), and shifted the current-voltage (I-V) curve upward in a concentration-dependent manner. In contrast, the addition of labedipinedilol-A increased transient outward potassium current (Ito) and inward rectifier potassium current (IK1) significantly. Labedipinedilol-A (10,µM) also effectively depressed the isoproterenol-induced increase in the Ca2+ current. These results show that labedipinedilol-A blocks ICa-L and INa, and increases Ito and IK1. These findings indicate that labedipinedilol-A produces direct cardiac action, probably due to the inhibition of cardiac Na+ and Ca2+ channels. Our results suggest that labedipinedilol-A may reduce the membrane conduction through inhibition of ionic channels which decrease ouabain-induced arrhythmia. Drug Dev Res 69:26,33, 2008 © 2008 Wiley-Liss, Inc. [source] Cardiac L-type calcium current is increased in a model of hyperaldosteronism in the ratEXPERIMENTAL PHYSIOLOGY, Issue 6 2009Beatriz Martin-Fernandez Accumulating evidence supports the importance of aldosterone as an independent risk factor in the pathophysiology of cardiovascular disease. It has been postulated that aldosterone could contribute to ventricular arrhythmogeneity by modulation of cardiac ionic channels. The aim of this study was to analyse ex vivo the electrophysiological characteristics of the L-type cardiac calcium current (ICaL) in a model of hyperaldosteronism in the rat. Aldosterone was administered for 3 weeks, and cardiac collagen deposition and haemodynamic parameters were analysed. In addition, RT-PCR and patch-clamp techniques were applied to study cardiac L-type Ca2+ channels in isolated cardiomyocytes. Administration of aldosterone induced maladaptive cardiac remodelling that was related to increased collagen deposition, diastolic dysfunction and cardiac hypertrophy. In addition, ventricular myocytes isolated from the aldosterone-treated group showed increased ICaL density and conductance and prolongation of the action potential duration. No changes in kinetics or in voltage dependence of activation and inactivation of ICaL were observed, but relative expression of CaV1.2 mRNA levels was higher in cardiomyocytes isolated from the aldosterone-treated group. The present study demonstrates that aldosterone treatment induces myocardial fibrosis, cardiac hypertrophy, increase of ICaL density, upregulation of L-type Ca2+ channels and prolongation of action potential duration. It could be proposed that aldosterone, through these mechanisms, might exert pro-arrhythmic effects in the pathological heart. [source] Differential sensitivity to calciseptine of L-type Ca2+ currents in a ,lower'vertebrate (Scyliorhinus canicula), a protochordate (Branchiostoma lanceolatum) and an invertebrate (Alloteuthis subulata)EXPERIMENTAL PHYSIOLOGY, Issue 6 2001Candida M. Rogers Voltage-dependent calcium currents in vertebrate (Scyliorhinus canicula), protochordate (Branchiostoma lanceolatum), and invertebrate (Alloteuthis subulata) skeletal and striated muscle were examined under whole-cell voltage clamp. Nifedipine (10 ,M) suppressed and cobalt (5 mM) blocked striated/skeletal muscle calcium currents in all of the animals examined, confirming that they are of the L-type class. Calciseptine, a specific blocker of vertebrate cardiac muscle and neuronal L-type calcium currents, was applied (0.2 ,M) under whole-cell voltage clamp. Protochordate and invertebrate striated muscle L-type calcium currents were suppressed while up to 4 ,M calciseptine had no effect on dogfish skeletal muscle L-type calcium currents. Our results demonstrate the presence of at least two sub-types of L-type calcium current in these different animals, which may be distinguished by their calciseptine sensitivity. We conclude that the invertebrate and protochordate L-type current sub-type that we have examined has properties in common with vertebrate ,cardiac' and ,neuronal' current sub-types, but not the skeletal muscle sub-type of the L-type channel. [source] Comparative Pharmacology of Guinea Pig Cardiac Myocyte and Cloned hERG (IKr) ChannelJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 11 2004CHRISTINA DAVIE Ph.D. Introduction: This study used whole-cell, patch clamp techniques on isolated guinea pig ventricular myocytes and HEK293 cells expressing cloned human ether-a-go-go-related gene (hERG) to examine the action of drugs causing QT interval prolongation and torsades de pointes (TdP) in man. Similarities and important differences in drug actions on cardiac myocytes and cloned hERG IKr channels were established. Qualitative actions of the drugs on cardiac myocytes corresponded with results obtained from Purkinje fibers and measurement of QT interval prolongation in animal and human telemetry studies. Methods and Results: Adult guinea pig ventricular myocytes were isolated by enzymatic digestion. Cells were continuously perfused with Tyrode's solution at 33,35°C. Recordings were made using the whole-cell, patch clamp technique. Action potentials (APs) were elicited under current clamp. Voltage clamp was used to study the effect of drugs on IKr (rapidly activating delayed rectifier potassium current), INa (sodium current), and ICa (L-type calcium current). Dofetilide increased the myocyte action potential duration (APD) in a concentration-dependent manner, with a pIC50 of 7.3. Dofetilide 1 ,M elicited early afterdepolarizations (EADs) but had little affect on ICa or INa. E-4031 increased APD in a concentration-dependent manner, with a pIC50 of 7.2. In contrast, 10 ,M loratadine, desloratadine, and cetirizine had little effect on APD or IKr. Interestingly, cisapride displayed a biphasic effect on myocyte APD and inhibited ICa at 1 ,M. Even at this high concentration, cisapride did not elicit EADs. A number of AstraZeneca compounds were tested on cardiac myocytes, revealing a mixture of drug actions that were not observed in hERG currents in HEK293 cells. One compound, particularly AR-C0X, was a potent blocker of myocyte AP (pIC50 of 8.4). AR-C0X also elicited EADs in cardiac myocytes. The potencies of the same set of drugs on the cloned hERG channel also were assessed. The pIC50 values for dofetilide, E-4031, terfenadine, loratadine, desloratadine, and cetirizine were 6.8, 7.1, 7.3, 5.1, 5.2, and <4, respectively. Elevation of temperature from 22 to 35°C significantly enhanced the current kinetics and amplitudes of hERG currents and resulted in approximately fivefold increase in E-4031 potency. Conclusion: Our study demonstrates the advantages of cardiac myocytes over heterologously expressed hERG channels in predicting QT interval prolongation and TdP in man. The potencies of some drugs in cardiac myocytes were similar to hERG, but only myocytes were able to detect important changes in APD characteristics and display EADs predictive of arrhythmia development. We observed similar qualitative drug profiles in cardiac myocytes, dog Purkinje fibers, and animal and human telemetry studies. Therefore, isolated native cardiac myocytes are a better predictor of drug-induced QT prolongation and TdP than heterologously expressed hERG channels. Isolated cardiac myocytes, when used with high-throughput patch clamp instruments, may have an important role in screening potential cardiotoxic compounds in the early phase of drug discovery. This would significantly reduce the attrition rate of drugs entering preclinical and/or clinical development. The current kinetics and amplitudes of the cloned hERG channel were profoundly affected by temperature, significantly altering the potency of one drug (E-4031). This finding cautions against routine drug testing at room temperature compared to physiologic temperature when using the cloned hERG channel. [source] Chromanol 293B Inhibits Slowly Activating Delayed Rectifier and Transient Outward Currents in Canine Left Ventricular MyocytesJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 4 2001Ph.D., ZHUO-QIAN SUN M.D. Chromanol 293B on Ionic Currents.Introduction: Drugs that selectively inhibit the slowly activating component of the delayed rectifier potassium current (IKs) are being considered as possible antiarrhythmic agents, because they produce more prolongation of action potential duration at fast rates with less transmural dispersion of repolarization compared with blockers of the rapidly activating component (IKr). Although the chromanol derivative chromanol 293B has been shown to be relatively selective in blocking IKs in some species, its selectivity is far from established. Methods and Results: The present study uses whole-cell, patch-clamp technique to examine the selectivity of this compound for inhibition of IKs in comparison with other repolarizing ionic currents, such as IKr, inward rectifier potassium current (IK1), transient outward current (Ito), and L-type calcium current (ICa-L) in canine left ventricular mid-myocardial and endocardial cells. Chromanol 293B blocked IKs with an IC50 of 1.8 ,M and Ito with an IC50 of 38 ,M. Concentrations as high as 30 ,M did not affect IK1, IKr, or ICa-L. Higher concentrations of chromanol 293B (100 ,M) caused a slight, but statistically insignificant, inhibition of IKr. Conclusion: Our results indicate that chromanol 293B is a relatively selective blocker of IKs in canine left ventricular myocytes. [source] Melatonin and its analogs potentiate the nifedipine-sensitive high-voltage-activated calcium current in the chick embryonic heart cellsJOURNAL OF PINEAL RESEARCH, Issue 1 2001Y.A. Mei Effects of melatonin and its analogs on the voltage-activated calcium current of embryonic chick ventricular cardiomyocytes were investigated. Myocytes were dissociated from 14- to 16-day-old chicks (yellow Red Rob) embryonic hearts and cultured for 2,3 days. Calcium currents were studied by the patch-clamp technique. Whole-cell current recording showed nifedipine-sensitive, high-voltage-activated L-type calcium current inactivated in 70,100 ms during the voltage step period of 200 ms. There was no evidence of low-voltage-activated T-type calcium channels. Melatonin (ejected solution: 50 ,mol/L melatonin; concentration at the vicinity of recording cell: about 1,5 ,mol/L melatonin) and its analogs, 2-iodomelatonin and 2-iodo-n-butanol-5-methoxytryptamine, significantly increased the amplitude of the calcium current by 42,62%. The effect of melatonin on the L-type calcium current was not desensitised by repeated melatonin treatment. Our results suggest a specific melatonin receptor-mediated action on the calcium channel of the embryonic chick myocyte. The melatonin-induced increase in high-voltage calcium current may increase myocyte contractility and enhance cardiac output. A regulatory role of melatonin on the chick cardiac function should be further considered. [source] Dendritic L-type calcium currents in mouse spinal motoneurons: implications for bistabilityEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2000K. P. Carlin Abstract The intrinsic properties of mammalian spinal motoneurons provide them with the capability to produce high rates of sustained firing in response to transient inputs (bistability). Even though it has been suggested that a persistent dendritic calcium current is responsible for the depolarizing drive underlying this firing property, such a current has not been demonstrated in these cells. In this study, calcium currents are recorded from functionally mature mouse spinal motoneurons using somatic whole-cell patch-clamp techniques. Under these conditions a component of the current demonstrated kinetics consistent with a current originating at a site spatially segregated from the soma. In response to step commands this component was seen as a late-onset, low amplitude persistent current whilst in response to depolarizing,repolarizing ramp commands a low voltage clockwise current hysteresis was recorded. Simulations using a neuromorphic motoneuron model could reproduce these currents only if a noninactivating calcium conductance was placed in the dendritic compartments. Pharmacological studies demonstrated that both the late-onset and hysteretic currents demonstrated sensitivity to both dihydropyridines and the L-channel activator FPL-64176. Furthermore, the ,1D subunits of L-type calcium channels were immunohistochemically demonstrated on motoneuronal dendrites. It is concluded that there are dendritically located L-type channels in mammalian motoneurons capable of mediating a persistent depolarizing drive to the soma and which probably mediate the bistable behaviour of these cells. [source] Differential sensitivity to calciseptine of L-type Ca2+ currents in a ,lower'vertebrate (Scyliorhinus canicula), a protochordate (Branchiostoma lanceolatum) and an invertebrate (Alloteuthis subulata)EXPERIMENTAL PHYSIOLOGY, Issue 6 2001Candida M. Rogers Voltage-dependent calcium currents in vertebrate (Scyliorhinus canicula), protochordate (Branchiostoma lanceolatum), and invertebrate (Alloteuthis subulata) skeletal and striated muscle were examined under whole-cell voltage clamp. Nifedipine (10 ,M) suppressed and cobalt (5 mM) blocked striated/skeletal muscle calcium currents in all of the animals examined, confirming that they are of the L-type class. Calciseptine, a specific blocker of vertebrate cardiac muscle and neuronal L-type calcium currents, was applied (0.2 ,M) under whole-cell voltage clamp. Protochordate and invertebrate striated muscle L-type calcium currents were suppressed while up to 4 ,M calciseptine had no effect on dogfish skeletal muscle L-type calcium currents. Our results demonstrate the presence of at least two sub-types of L-type calcium current in these different animals, which may be distinguished by their calciseptine sensitivity. We conclude that the invertebrate and protochordate L-type current sub-type that we have examined has properties in common with vertebrate ,cardiac' and ,neuronal' current sub-types, but not the skeletal muscle sub-type of the L-type channel. [source] Endothelin-1 Modulates the Arrhythmogenic Activity of Pulmonary VeinsJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 3 2008AMEYA R. UDYAVAR M.D. Objective: Endothelin-1 has important cardiovascular effects and is activated during atrial fibrillation. Pulmonary veins (PVs) play a critical role in the pathophysiology of atrial fibrillation. The aim of this study was to evaluate whether endothelin-1 affects PV arrhythmogenic activity. Methods: Conventional microelectrodes were used to record the action potentials (APs) and contractility in isolated rabbit PV tissue specimens before and after the administration of endothelin-1 (0.1, 1, 10 nM). The ionic currents of isolated PV cardiomyocytes were investigated before and after the administration of endothelin-1 (10 nM) through whole-cell patch clamps. Results: In the tissue preparation, endothelin-1 (1, 10 nM) concentration dependently shortened the AP duration and decreased the PV firing rates. Endothelin-1 (10 nM) decreased the resting membrane potential. Endothelin-1 (0.1, 1, 10 nM) decreased the contractility and increased the resting diastolic tension. In single PV cardiomyocytes, endothelin-1 (10 nM) decreased the PV firing rates from 2.7 ± 1.0 Hz to 0.8 ± 0.5 Hz (n = 16). BQ-485 (100 ,M, endothelin-1 type A receptor blocker) reversed and prevented the chrono-inhibitory effects of endothelin-1 (10 nM). Endothelin-1 (10 nM) reduced the L-type calcium currents, transient outward currents, delayed rectifier currents, transient inward currents, and sodium,calcium exchanger currents in the PV cardiomyocytes with and without pacemaker activity. Endothelin-1 (10 nM) increased the inward rectifier potassium current, hyperpolarization-induced pacemaker current, and the sustained outward potassium current in PV cardiomyocytes with and without pacemaker activity. Conclusion: Endothelin-1 may have an antiarrhythmic potential through its direct electrophysiological effects on the PV cardiomyocytes and its action on multiple ionic currents. [source] The Novel Antiarrhythmic Drug Dronedarone: Comparison with AmiodaroneCARDIOVASCULAR THERAPEUTICS, Issue 3 2005Sven Kathofer ABSTRACT Dronedarone is a noniodinated benzofuran derivative that has been developed to overcome the limiting iodine-associated adverse effects of the commonly used antiarrhythmic drug, amiodarone. It displays a wide cellular electrophysiological spectrum largely similar to amiodarone, inhibiting the potassium currents Ikr, IKs, IKI, IKACh, and Isus, as well as sodium currents and L-type calcium currents in isolated cardiomyocytes. In addition, dronedarone exhibits antiadrenergic properties. In vivo, dronedarone has been shown to be more effective than amiodarone in several arrhythmia models, particularly in preventing ischemia- and reperfusion-induced ventricular fibrillation and in reducing mortality. However, an increased incidence of torsades de pointes with dronedarone in dogs shows that possible proarrhythmic effects of dronedarone require further evaluation. The clinical trails DAFNE, EURIDIS, and ADONIS indicated safety, antiarrhythmic efficacy and low proarrhythmic potential of the drug in low-risk patients. In contrast, the increased incidence of death in the dronedarone group of the discontinued ANDROMEDA trial raises safety concerns for patients with congestive heart failure and moderate to severe left ventricular dysfunction. Dronedarone appears to be effective in preventing relapses of atrial fibrillation and atrial flutter. Torsades de pointes, the most severe adverse effect associated with amiodarone, has not yet been reported in humans with dronedarone. Unlike amiodarone, dronedarone had little effect on thyroid function and hormone levels in animal models and had no significant effects on human thyroid function in clinical trials. In conclusion, dronedarone could be a useful drug for prevention of atrial fibrillation and atrial flutter relapses in low-risk patients. However, further experimental studies and long-term clinical trials are required to provide additional evidence of efficacy and safety of dronedarone. [source] |