Home About us Contact | |||
LTP
Terms modified by LTP Selected AbstractsAre CB1 receptor antagonists nootropic or cognitive impairing agents?DRUG DEVELOPMENT RESEARCH, Issue 8 2009Stephen A. Varvel Abstract For more than a decade, a considerable amount of research has examined the effects of rimonabant (SR 141716) and other CB1 receptor antagonists in both in vivo and in vitro models of learning and memory. In addition to its utility in determining whether the effects of drugs are mediated though a CB1 receptor mechanism of action, these antagonists are useful in providing insight into the physiological function of the endogenous cannabinoid system. Several groups have reported that CB1 receptor antagonists enhance memory duration in a variety of spatial and operant paradigms, but not in all paradigms. Conversely, disruption of CB1 receptor signaling also impairs extinction learning in which the animal actively suppresses a learned response when reinforcement has been withheld. These extinction deficits occur in aversively motivated tasks, such as in fear conditioning or escape behavior in the Morris water maze task, but not in appetitively motivated tasks. Similarly, in electrophysiological models, CB1 receptor antagonists elicit a variety of effects, including enhancement of long-term potentiation (LTP), while disrupting long-term depression (LTD) and interfering with transient forms of plasticity, including depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). The collective results of the in vivo and in vitro studies employing CB1 receptor antagonists, demonstrate that these receptors play integral roles in different components of cognitive processing. Functionally, pharmacological blockade of CB1 receptors may strengthen memory duration, but interferes with extinction of learned behaviors that are associated with traumatic or aversive memories. Drug Dev Res 70:555,565, 2009. © 2009 Wiley-Liss, Inc. [source] Impairment of CaMKII activation and attenuation of neuropathic pain in mice lacking NR2B phosphorylated at Tyr1472EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2010Shinji Matsumura Abstract Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a key mediator of long-term potentiation (LTP), which can be triggered by N -methyl- d -aspartate (NMDA) receptor-mediated Ca2+ influx. We previously demonstrated that Fyn kinase-mediated phosphorylation of NR2B subunits of NMDA receptors at Tyr1472 in the dorsal horn was involved in a neuropathic pain state even 1 week after nerve injury. Here we show that Y1472F-KI mice with a knock-in mutation of the Tyr1472 site to phenylalanine did not exhibit neuropathic pain induced by L5 spinal nerve transection, whereas they did retain normal nociceptive responses and induction of inflammatory pain. Phosphorylation of NR2B at Tyr1472 was only impaired in the spinal cord of Y1472F-KI mice among the major phosphorylation sites. There was no difference in the Ca2+ response to glutamate and sensitivity to NMDA receptor antagonists between naive wild-type and Y1472F-KI mice, and the Ca2+ response to glutamate was attenuated in the Y1472F-KI mice after nerve injury. Autophosphorylation of CaMKII at Thr286 was markedly impaired in Y1472F-KI mice after nerve injury, but there was no difference in phosphorylation of CaMKII at Thr305 or protein kinase C, at Thr674, and activation of neuronal nitric oxide synthase and microglia in the superficial layer of spinal cord between wild-type and Y1472F-KI mice after the operation. These results demonstrate that the attenuation of neuropathic pain is caused by the impaired NMDA receptor-mediated CaMKII signaling in Y1472F-KI mice, and suggest that autophosphorylation of CaMKII at Thr286 plays a central part not only in LTP, but also in persistent neuropathic pain. [source] COX-2, but not COX-1, activity is necessary for the induction of perforant path long-term potentiation and spatial learning in vivoEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2008T. R. Cowley Abstract The objectives of this research were to investigate the role played by the enzyme cyclooxygenase (COX) in learning and memory, synaptic plasticity and synaptic transmission in the rat brain in vivo. Male Wistar rats were treated with isoform-selective inhibitors for COX-1 and COX-2, either chronically and tested in the watermaze or acutely before electrophysiological recordings were made. We found a significant impairment in acquisition of the watermaze with inhibition of COX-2. Furthermore, we found COX-2 but not COX-1 inhibition significantly blocked long-term potentiation (LTP) induction but had no effect on already established LTP. Moreover, exogenous replacement of the main metabolite of COX-2 activity, PGE2, was sufficient to restore LTP induction and for normal downstream signalling to ensue, namely extracellular signalling-regulated kinase (ERK)-phosphorylation and c-FOS expression. We conclude that endogenous basal levels of PGE2 resulting from COX-2 but not COX-1 activity are necessary for synaptic plasticity and memory acquisition. [source] CD4+CD25, effector T-cells inhibit hippocampal long-term potentiation in vitroEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2007Gil M. Lewitus Abstract During neuroinflammation T-cells invade the CNS, and may lead to the development and progression of several pathologies, of which multiple sclerosis is the most common. In these pathologies neuroinflammation is often associated with cognitive dysfunction. Using mouse hippocampal slices, we show here that CD4+CD25, T-cells inhibit long-term potentiation (LTP) induced by high-frequency stimulation. The T-cell-mediated inhibition of LTP can be prevented by blockade of ,-aminobutyric acid (GABA)A receptors. These findings provide additional insight into the multiple functions of T-cells in CNS pathologies. [source] Nicotine withdrawal suppresses nicotinic modulation of long-term potentiation induction in the hippocampal CA1 regionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2006Yoshihiko Yamazaki Abstract We have previously reported that acute and chronic nicotine exposure lower the threshold for long-term potentiation (LTP) induction in the rat hippocampal CA1 region, and acute application of nicotine in the chronic-nicotine-treated hippocampus further reduces the threshold. However, it is unknown how withdrawal from chronic nicotine exposure affects the induction of LTP. Here, we show that, following nicotine withdrawal, the threshold for LTP induction fluctuates before returning to the basal level and acute nicotine is no longer effective in lowering the threshold at 4 days after withdrawal. Chronic nicotine-induced enhancement of N -methyl- d -aspartate receptor responses slowly diminishes and returns to the control level by 8 days of withdrawal. In 4-day-withdrawn hippocampi, there is functional up-regulation of postsynaptic ,7 nicotinic acetylcholine receptors (nAChRs) on interneurons in the stratum radiatum, whereas the release of ,-aminobutyric acid from their terminals is reduced. In both control and chronic nicotine-exposed hippocampi, acute nicotine depresses monosynaptic inhibitory postsynaptic currents recorded in pyramidal cells but has almost no effect at 4 days of withdrawal. The lack of effect is due, at least in part, to the loss of a presynaptic nicotine effect. These withdrawal-induced changes are accompanied by decreases in normal nicotine-induced enhancement of N -methyl- d -aspartate receptor responses, which may be responsible for the lack of acute nicotine-mediated facilitation of LTP induction in 4-day-withdrawn hippocampi. These withdrawal-induced changes may contribute to the cellular basis of unpleasant withdrawal symptoms and, thus, nicotine dependence. [source] Stress reverses plasticity in the pathway projecting from the ventromedial prefrontal cortex to the basolateral amygdalaEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2006Mouna Maroun Abstract We have previously shown that high-frequency stimulation to the basolateral amygdala (BLA) induces long-term potentiation (LTP) in the ventromedial prefrontal cortex (vmPFC) and that prior exposure to inescapable stress inhibits the induction of LTP in this pathway [Maroun & Richter-Levin (2003)J. Neurosci., 23, 4406,4409]. Here, we show that the reciprocal pathway projecting from the vmPFC to the BLA is resistant to the induction of LTP. Conversely, long-term depression (LTD) is robustly induced in the BLA in response to low-frequency stimulation to the vmPFC. Furthermore, prior exposure to inescapable stress reverses plasticity in this pathway, resulting in the promotion of LTP and the inhibition of LTD. Our findings suggest that, under normal and safe conditions, the vmPFC is unable to exert excitatory synaptic plasticity over the BLA; rather, LTD, which encodes memory of safety in the BLA, is favoured. Following stressful experiences, LTP in the BLA is promoted to encode memory of fear. [source] Local and descending circuits regulate long-term potentiation and zif268 expression in spinal neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2006Lars Jørgen Rygh Abstract Long-term potentiation (LTP), a use dependent long-lasting modification of synaptic strength, was first discovered in the hippocampus and later shown to occur in sensory areas of the spinal cord. Here we demonstrate that spinal LTP requires the activation of a subset of superficial spinal dorsal horn neurons expressing the neurokinin-1 receptor (NK1-R) that have previously been shown to mediate certain forms of hyperalgesia. These neurons participate in local spinal sensory processing, but are also the origin of a spino-bulbo-spinal loop driving a 5-hydroxytryptamine 3 receptor (5HT3-R)- mediated descending facilitation of spinal pain processing. Using a saporin-substance P conjugate to produce site-specific neuronal ablation, we demonstrate that NK1-R expressing cells in the superficial dorsal horn are crucial for the generation of LTP-like changes in neuronal excitability in deep dorsal horn neurons and this is modulated by descending 5HT3-R-mediated facilitatory controls. Hippocampal LTP is associated with early expression of the immediate-early gene zif268 and knockout of the gene leads to deficits in long-term LTP and learning and memory. We found that spinal LTP is also correlated with increased neuronal expression of zif268 in the superficial dorsal horn and that zif268 antisense treatment resulted in deficits in the long-term maintenance of inflammatory hyperalgesia. Our results support the suggestion that the generation of LTP in dorsal horn neurons following peripheral injury may be one mechanism whereby acute pain can be transformed into a long-term pain state. [source] Early life modulators and predictors of adult synaptic plasticityEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2006Katherine G. Akers Abstract Early life experience can induce long-lasting changes in brain and behaviour that are opposite in direction, such as enhancement or impairment in regulation of stress response, structural and functional integrity of the hippocampus, and learning and memory. To explore how multiple early life events jointly determine developmental outcome, we investigated the combined effects of neonatal trauma (anoxia on postnatal day 1, P1) and neonatal novelty exposure (P2,21) on adult social recognition memory (3 months of age) and synaptic plasticity in the CA1 of the rat hippocampus (4.5,8 months of age). While neonatal anoxia selectively reduced post-tetanic potentiation (PTP), neonatal novel exposure selectively increased long-term potentiation (LTP). No interaction between anoxia and novelty exposure was found on either PTP or LTP. These findings suggest that the two contrasting neonatal events have selective and distinct effects on two different forms of synaptic plasticity. At the level of behaviour, the effect of novelty exposure on LTP was associated with increased social memory, and the effect of anoxia on PTP was not accompanied by changes in social memory. Such a finding suggests a bias toward the involvement of LTP over PTP in social memory. Finally, we report a surprising finding that an early behavioural measure of emotional response to a novel environment obtained at 25 days of age can predict adult LTP measured several months later. Therefore, individual differences in emotional responses present during the juvenile stage may contribute to adult individual differences in cellular mechanisms that underlie learning and memory. [source] Effect of cortical spreading depression on synaptic transmission of rat hippocampal tissuesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2006Brigitta Wernsmann Abstract Cortical spreading depression (CSD) is believed to be a putative neuronal mechanism underlying migraine aura and subsequent pain. In vitro and ex vivo/in vitro brain slice techniques were used to investigate CSD effects on the field excitatory postsynaptic potentials (fEPSP) and tetanus-induced long-term potentiation (LTP) in combined rat hippocampus,cortex slices. Induction of CSD in combined hippocampus,cortex slices in which DC negative deflections did not propagate from neocortex to hippocampus significantly augmented fEPSP amplitude and LTP in the hippocampus. Propagation of CSD to the hippocampus resulted in a transient suppression followed by reinstatement of fEPSP with amplitude of pre-CSD levels. LTP was inhibited when DC potential shifts were recorded in the hippocampus. Furthermore, CSD was induced in anaesthetized rats and, thereafter, hippocampal tissues were examined in vitro. LTP was significantly enhanced in hippocampal slices obtained from ipsilateral site to the hemisphere in which CSD was evoked. The results indicate the disturbances of hippocampal synaptic transmission triggered by propagation of CSD. This perturbation of hippocampal synaptic transmission induced by CSD may relate to some symptoms occurring during migraine attacks, such as amnesia and hyperactivity. [source] Melatonin inhibits hippocampal long-term potentiationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2005Louisa M. Wang Abstract The goal of this study is to investigate the effect of the hormone melatonin on long-term potentiation and excitability measured by stimulating the Schaffer collaterals and recording the field excitatory postsynaptic potential from the CA1 dendritic layer in hippocampal brain slices from mice. Application of melatonin produced a concentration-dependent inhibition of the induction of long-term potentiation, with a concentration of 100 nm producing an ,,50% inhibition of long-term potentiation magnitude. Long-duration melatonin treatments of 6 h were also effective at reducing the magnitude of long-term potentiation. Melatonin (100 nm) did not alter baseline evoked responses or paired-pulse facilitation recorded at this synapse. The inhibitory actions of melatonin were prevented by application of the melatonin (MT) receptor antagonist luzindole as well as the MT2 receptor subtype antagonist 4-phenyl-2-propionamidotetraline. These inhibitory actions of melatonin were lost in mice deficient in MT2 receptors but not those deficient in MT1 receptors. In addition, application of the protein kinase A inhibitor H-89 both mimicked the effects of melatonin and precluded further inhibition by melatonin. Finally, the application an activator of adenylyl cyclase, forskolin, overcame the inhibitory effects of melatonin on LTP without affecting the induction of long-term potentiation on its own. These results suggest that hippocampal synaptic plasticity may be constrained by melatonin through a mechanism involving MT2-receptor-mediated regulation of the adenylyl cyclase,protein kinase A pathway. [source] Fear learning induces persistent facilitation of amygdala synaptic transmissionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2005Bradley W. Schroeder Abstract In the maintenance phase of fear memory, synaptic transmission is potentiated and the stimulus requirements and signalling mechanisms are altered for long-term potentiation (LTP) in the cortico-lateral amygdala (LA) pathway. These findings link amygdala synaptic plasticity to the coding of fear memories. Behavioural experiments suggest that the amygdala serves to store long-term fear memories. Here we provide electrophysiological evidence showing that synaptic alterations in rats induced by fear conditioning are evident in vitro 10 days after fear conditioning. We show that synaptic transmission was facilitated and that high-frequency stimulation dependent LTP (HFS,LTP) of the cortico-lateral amygdala pathway remained attenuated 10 days following fear conditioning. Additionally, we found that the low-frequency stimulation dependent LTP (LFS,LTP) measured 24 h after fear conditioning was absent 10 days post-training. The persistent facilitation of synaptic transmission and occlusion of HFS,LTP suggests that, unlike hippocampal coding of contextual fear memory, the cortico-lateral amygdala synapse is involved in the storage of long-term fear memories. However, the absence of LFS,LTP 10 days following fear conditioning suggests that amygdala physiology 1 day following fear learning may reflect a dynamic state during memory stabilization that is inactive during the long-term storage of fear memory. Results from these experiments have significant implications regarding the locus of storage for maladaptive fear memories and the synaptic alterations induced by these memories. [source] Group I metabotropic glutamate receptors regulate the frequency,response function of hippocampal CA1 synapses for the induction of LTP and LTDEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2004Els J. M. Van Dam Abstract Synaptically released glutamate binds to ionotropic or metabotropic glutamate receptors. Metabotropic glutamate receptors (mGluRs) are G-protein-coupled receptors and can be divided into three subclasses (Group I,III) depending on their pharmacology and coupling to signal transduction cascades. Group I mGluRs are coupled to phospholipase C and are implicated in several important physiological processes, including activity-dependent synaptic plasticity, but their exact role in synaptic plasticity remains unclear. Synaptic plasticity can manifest itself as an increase or decrease of synaptic efficacy, referred to as long-term potentiation (LTP) and long-term depression (LTD). The likelihood, degree and direction of the change in synaptic efficacy depends on the history of the synapse and is referred to as ,metaplasticity'. We provide direct experimental evidence for an involvement of group I mGluRs in metaplasticity in CA1 hippocampal synapses. Bath application of a low concentration of the specific group I agonist 3,5-dihydroxyphenylglycine (DHPG), which does not affect basal synaptic transmission, resulted in a leftward shift of the frequency,response function for the induction of LTD and LTP in naïve synapses. DHPG resulted in the induction of LTP at frequencies which induced LTD in control slices. These alterations in the induction of LTD and LTP resemble the metaplastic changes observed in previously depressed synapses. In addition, in the presence of DHPG additional potentiation could be induced after LTP had apparently been saturated. These findings provide strong evidence for an involvement of group I mGluRs in the regulation of metaplasticity in the CA1 field of the hippocampus. [source] Bidirectional synaptic plasticity as a consequence of interdependent Ca2+ -controlled phosphorylation and dephosphorylation pathwaysEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2003Pablo D'Alcantara Abstract Postsynaptic Ca2+ signals of different amplitudes and durations are able to induce either long-lasting potentiation (LPT) or depression (LTD). The bidirectional character of synaptic plasticity may result at least in part from an increased or decreased responsiveness of the glutamatergic ,-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPA-R) due to the modification of conductance and/or channel number, and controlled by the balance between the activities of phosphorylation and dephosphorylation pathways. AMPA-R depression can be induced by a long-lived Ca2+ signal of moderate amplitude favouring the activation of the dephosphorylation pathway, whereas a shorter but higher Ca2+ signal would induce AMPA-R potentiation resulting from the preferential activation of the phosphorylation pathway. Within the framework of a model involving calcium/calmodulin-dependent protein kinase II (CaMKII), calcineurin (PP2B) and type 1 protein phosphatase (PP1), we aimed at delineating the conditions allowing a biphasic U-shaped relationship between AMPA-R and Ca2+ signal amplitude, and thus bidirectional plasticity. Our theoretical analysis shows that such a property may be observed if the phosphorylation pathway: (i) displays higher cooperativity in its Ca2+ -dependence than the dephosphorylation pathway; (ii) displays a basal Ca2+ -independent activity; or (iii) is directly inhibited by the dephosphorylation pathway. Because the experimentally observed inactivation of CaMKII by PP1 accounts for this latter characteristic, we aimed at verifying whether a realistic model using reported parameters values can simulate the induction of either LTP or LTD, depending on the time and amplitude characteristics of the Ca2+ signal. Our simulations demonstrate that the experimentally observed bidirectional nature of Ca2+ -dependent synaptic plasticity could be the consequence of the PP1-mediated inactivation of CaMKII. [source] Deficits in spatial learning and synaptic plasticity induced by the rapid and competitive broad-spectrum cyclooxygenase inhibitor ibuprofen are reversed by increasing endogenous brain-derived neurotrophic factorEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2003Kendra N. Shaw Abstract Cyclooxygenase (COX), which is present in two isoforms (COX1 and 2), synthesizes prostaglandins from arachidonic acid; it plays a crucial role in inflammation in both central and peripheral tissues. Here, we describe its role in synaptic plasticity and spatial learning in vivo via an effect on brain-derived neurotrophic factor (BDNF) and prostaglandin E2 (PGE2; both measured by Elisa). We found that broad-spectrum COX inhibition (BSCI) inhibits the induction of long-term potentiation (LTP; the major contemporary model of synaptic plasticity), and causes substantial and sustained deficits in spatial learning in the watermaze. Increases in BDNF and PGE2 following spatial learning and LTP were also blocked. Importantly, 4 days of prior exercise in a running wheel increased endogenous BDNF levels sufficiently to reverse the BSCI of LTP and spatial learning, and restored a parallel increase in LTP and learning-related BDNF and PGE2. In control experiments, we found that BSCI had no effect on baseline synaptic transmission or on the nonhippocampal visible-platform task; there was no evidence of gastric ulceration from BSCI. COX2 is inhibited by glucorticoids; there was no difference in blood corticosterone levels as measured by radioimmunoassay in any condition. Thus, COX plays a previously undescribed, permissive role in synaptic plasticity and spatial learning via a BDNF-associated mechanism. [source] Hippocampal long-term depression as an index of spatial working memoryEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2002Kazuhito Nakao Abstract Long-term potentiation (LTP), a form of synaptic plasticity in the hippocampus, is a cellular model for the neural basis of learning and memory, but few studies have investigated the contribution of long-term depression (LTD), a counterpart of LTP. To address the possible relationship between hippocampal LTD and spatial performance, the spatial cognitive ability of a rat was assessed in a spontaneous alternation test and, thereafter, LTD in response to low-frequency burst stimulation (LFBS) was monitored in the dentate gyrus of the same rat under anaesthesia. To enhance a divergence in the ability for spatial performance, some of the animals received fimbria,fornix (FF) transection 14 days before the experiments. LTD was reliably induced by application of LFBS to the medial perforant path of intact rats, while no apparent LTD was elicited in rats with FF lesions. The behavioural parameters of spatial memory showed a significant correlation with the magnitude of LTD. We found no evidence that the cognitive ability correlated with other electrophysiological parameters, e.g. basal synaptic responses, stimulus intensity to produce half-maximal responses, paired-pulse facilitation or paired-pulse depression. These results suggest that the magnitude of LTD in the dentate gyrus serves as a reliable index of spatial cognitive ability, providing insights into the functional significance of hippocampal LTD. [source] A point mutant of GAP-43 induces enhanced short-term and long-term hippocampal plasticityEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2002S. Hulo Abstract The growth-associated protein GAP-43 (or neuromodulin or B-50) plays a critical role during development in mechanisms of axonal growth and formation of synaptic networks. At later times, GAP-43 has also been implicated in the regulation of synaptic transmission and properties of plasticity such as long-term potentiation. In a molecular approach, we have analyzed transgenic mice overexpressing different mutated forms of GAP-43 or deficient in GAP-43 to investigate the role of the molecule in short-term and long-term plasticity. We report that overexpression of a mutated form of GAP-43 that mimics constitutively phosphorylated GAP-43 results in an enhancement of long-term potentiation in CA1 hippocampal slices. This effect is specific, because LTP was affected neither in transgenic mice overexpressing mutated forms of non-phosphorylatable GAP-43 nor in GAP-43 deficient mice. The increased LTP observed in transgenic mice expressing a constitutively phosphorylated GAP-43 was associated with an increased paired-pulse facilitation as well as an increased summation of responses during high frequency bursts. These results indicate that, while GAP-43 is not necessary for LTP induction, its phosphorylation may regulate presynaptic properties, thereby affecting synaptic plasticity and the induction of LTP. [source] Properties of LTD and LTP of retinocollicular synaptic transmission in the developing rat superior colliculusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2002Fu-Sun Lo Abstract The developing retinocollicular pathway undergoes synaptic refinement in order to form the precise retinotopic pattern seen in adults. To study the mechanisms which underlie refinement, we investigated long-term changes in retinocollicular transmission in rats aged P0,P25. Field potentials (FPs) in the superior colliculus (SC) were evoked by stimulation of optic tract fibers in an in vitro isolated brainstem preparation. High intensity stimulation induced long-term depression (LTD) in the SC after both low (1000 stimuli at 1 Hz) and higher (1000 stimuli at 50 Hz) frequency stimulation. The induction of LTD was independent of activation of NMDA and GABAA receptors, because d -APV (100 µM) and bicuculline (10 µM) did not block LTD. Induction of LTD was dependent upon activation of l -type Ca2+ channels as 10 µM nitrendipine, an l -type Ca2+ channel blocker, significantly decreased the magnitude of LTD. LTD was down-regulated during development. LTD magnitude was greatest in rats aged P0,P9 and significantly less in rats aged P10,P25. Long-term potentiation (LTP) was induced by low intensity stimulation and only after high frequency tetanus (1000 stimuli at 50 Hz). LTP was NMDA receptor dependent because d -APV (100 ,M) completely abolished it. LTP induction was also blocked by the l -type Ca2+ channel blocker nitrendipine. The magnitude of LTP first increased with age, being significantly greater at P7,P13 than at P0,3 and then decreased at P23,25. In summary, both LTD and LTP are present during retinocollicular pathway refinement, but have different transmitter and ionic mechanisms and time courses of expression. [source] Exogenous nitric oxide causes potentiation of hippocampal synaptic transmission during low-frequency stimulation via the endogenous nitric oxide,cGMP pathwayEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2001Christelle L. M. Bon Abstract Nitric oxide (NO) is a putative participant in synaptic plasticity and demonstrations that exogenous NO can elicit the same plastic changes have been taken to support such a role. The experiments, carried out on the CA1 region of rat hippocampal slices, were aimed at testing this interpretation. A major component of tetanus-induced long-term potentiation (LTP) was lost in response to l -nitroarginine, which inhibits NO synthase, and 1H -[1,2,4]oxadiazolo[4,3- a]quinoxalin-1-one (ODQ), which inhibits NO-sensitive soluble guanylyl cyclase (sGC). At 0.2 Hz afferent fibre stimulation, exogenous NO produced, concentration-dependently, a synaptic depression that reverted on washout to a persistent potentiation that occluded tetanus-induced LTP. The NO concentrations necessary (estimated in the 100-nm range), however, were mostly supramaximal for stimulating hippocampal slice sGC activity. Nevertheless the potentiation, but not the preceding depression, was blocked by ODQ. l -nitroarginine and an NMDA antagonist were similarly effective, indicating mediation by the endogenous NMDA receptor,NO synthase,sGC pathway. At a concentration normally too low to affect synaptic transmission but sufficient to stimulate sGC (estimated to be 50 nm), exogenous NO reversed the effect of l -nitroarginine and caused a potentiation which was blocked by ODQ. At a concentration inducing the depression/potentiation sequence, NO partially inhibited hippocampal slice oxygen consumption. It is concluded that, at physiological levels, exogenous NO can directly elicit a potentiation of synaptic transmission through sGC, provided that the synapses are suitably primed. At higher concentrations, NO inhibits mitochondrial respiration, which can result in an enduring synaptic potentiation due to secondary activation of the endogenous NO,cGMP pathway. [source] Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factorEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2001Tomoyuki Mizuno Abstract Two opposite types of synaptic plasticity in the CA1 hippocampus, long-term potentiation (LTP) and long-term depression (LTD), require postsynaptic Ca2+ elevation. To explain these apparently contradictory phenomena, the current view assumes that a moderate postsynaptic increase in Ca2+ leads to LTD, whereas a large increase leads to LTP. No detailed study has so far been attempted to investigate whether the instantaneous Ca2+ elevation level differentially induces LTP or LTD. We therefore used low-frequency (1 Hz) stimulation of Schaffer collateral/commissural fibers in rat hippocampal slices, during a Mg2+ -free period, as the conditioning stimulus to investigate this. This allowed low-frequency afferent stimulation to cause a postsynaptic Ca2+ influx because the voltage-dependent block of N -methyl- d -aspartate (NMDA) receptor-channels by Mg2+ was removed. When delivered during the Mg2+ -free period, a single pulse, as well as 2,600 pulses, induced LTP that was occluded with tetanus-induced LTP. To decrease the Ca2+ influx, ,-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors were completely blocked by the addition of 10 µm 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) to the conditioning medium, in which 1 Hz afferent stimuli (1,600 pulses) induced less LTP and never induced LTD. To further reduce the Ca2+ influx, NMDA receptors were partially blocked with d -(,)-2-amino-5-phosphonopentanoic acid (d -AP5). A small number of 1 Hz stimuli, however, never induced LTD. Only when the conditioning stimuli exceeded 200 pulses was LTD induced. The present findings provide definitive evidence that protracted conditioning is a prerequisite for the induction of LTD. Thus, not only the amplitude but also the duration of postsynaptic Ca2+ elevation could be essential factors for differentially inducing LTP or LTD. [source] Synaptic plasticity in the basolateral amygdala in transgenic mice expressing dominant-negative cAMP response element-binding protein (CREB) in forebrainEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2000G. Rammes Abstract Electrophysiological and behavioural experiments were performed in transgenic mice expressing a dominant-negative form of cAMP response element-binding protein (CREBA133) in the limbic system. In control littermate in vitro slice preparation, tetanizing the lateral amygdala,basolateral amygdala (BLA) pathway with a single train (100 Hz for 1 s) produced short-term potentiation (STP) in the BLA. Five trains (10-s interstimulus interval) induced long-term potentiation (LTP), which was completely blocked by the N-methyl- d -aspartate (NMDA) receptor antagonist d(,)-2-amino-5-phosphonopentanoic acid (AP5; 50 ,m). When GABAergic (,-aminobutyric acid) inhibition was blocked by picrotoxin (10 ,m), LTP became more pronounced. Low-frequency stimulation (1 Hz for 15 min) induced either long-term depression (LTD) or depotentiation. LTD remained unaffected by AP5 (50 ,m) or by the L- and T-type Ca2+ -channel blockers nifedipine (20 ,m) and Ni2+ (50 ,m), but was prevented by picrotoxin (10 ,m), indicating a GABAergic link in the expression of LTD in the BLA. When conditioned fear was tested, a mild impairment was seen in one of three transgenic lines only. Although high levels of mRNA encoding CREBA133 lead to downregulation of endogenous CREB, expression of LTP and depotentiation were unaltered in BLA of these transgenic animals. These results could suggest that residual CREB activity was still present or that CREB per se is dispensable. Alternatively, other CREB-like proteins were able to compensate for impaired CREB function. [source] The serotonin 5-HT2 receptor,phospholipase C system inhibits the induction of long-term potentiation in the rat visual cortexEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2000Yoshikuni Edagawa Abstract The effect of serotonin 5-HT2 receptor stimulation on long-term potentiation (LTP) in the primary visual cortex was investigated by using rat brain slices in vitro. Field potentials evoked by stimulation of layer IV were recorded in layer II/III. The 5-HT2 receptor agonist 1-(2,5-dimethyl-4-iodophenyl)-2-aminopropane (DOI) did not affect baseline synaptic potentials evoked by single-pulse test stimulation, but significantly inhibited the induction of LTP in a concentration-dependent manner (0.1,10 ,m). The LTP-inhibiting effect of DOI (10 ,m) was blocked by the 5-HT2,7 receptor antagonist ritanserin (10 ,m), but not by the 5-HT1A receptor antagonist NAN-190 (10 ,m) nor by the 5-HT3,4 receptor antagonist MDL72222 (10 ,m). The inhibitory effect of DOI was also blocked by the phospholipase C inhibitor U73122, but not by its inactive analogue U73343. These results suggest that visual cortex LTP is inhibited by activation of the 5-HT2 receptor,phospholipase C system. In addition, the LTP-inhibiting effect of DOI was abolished by the presence of the GABAA receptor antagonist bicuculline (10 ,m), suggesting that 5-HT2 receptor-mediated inhibition of visual cortex LTP is dependent on GABAergic inhibition. [source] Repeated long-term potentiation induces mossy fibre sprouting and changes the sensibility of hippocampal granule cells to subconvulsive doses of pentylenetetrazolEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2000Hadir Hassan Abstract Electrical and chemical kindling induces sprouting of the mossy fibre system and potentiation of evoked field potentials in the dentate gyrus. It has been postulated that such changes may also be induced by repeated induction of long-term potentiation (LTP) with tetanic stimulation of the perforant pathway. LTP was induced in rats chronically implanted with stimulation electrodes in the ipsilateral and contralateral angular bundles and with a recording electrode in the ipsilateral dorsal dentate gyrus. The animals were stimulated 10 times on 10 consecutive days but with different tetanization strengths. Sprouting of the mossy fibres terminating in the CA3 region was significantly induced only in the group of ,strongly' tetanized animals, but not in that of ,weakly' tetanized animals, or in low-frequency stimulated animals. Additionally, a novel form of potentiation which was previously found in pentylenetetrazol (PTZ)-kindled animals was also observed in the group of ,strongly' and ,weakly' tetanized rats. Differences in duration of this potentiation were found between the two groups of animals tetanized with different strengths. The results further demonstrate that morphological and functional changes in the hippocampus, similar to those seen after kindling, can also occur in an activation paradigm leading to long-lasting synaptic plasticity but not accompanied by seizure activity. [source] A Synthesis Detour to Planar-Diastereoisomeric Ferrocene Derivatives around an Unexpected Rearrangement of ortho -Lithiated Kagan's Template [S(S)] - (p -Tolylsulfinyl)ferroceneHELVETICA CHIMICA ACTA, Issue 4 2007Immo Weber Abstract Usually, ortho lithiation of Kagan's template 1 and quenching with electrophiles leads highly diastereoselectively to planar-chiral 1,2-disubstituted ferrocenes. Surprisingly, lithiation of 1 with lithium diisopropylamide (LDA) followed by addition of paraformaldehyde afforded regioisomer (+)-{[S(S)] - [4-(2-hydroxyethyl)phenyl]sulfinyl}ferrocene (2), which was converted to (+)-{[S(S)] - {4-{2-[(methylsulfonyl)oxy]ethyl}phenyl}sulfinyl}ferrocene (3) (Scheme,1). The desired diastereoisomer (l)-1-(hydroxymethyl)-2-(p -tolylsulfinyl)ferrocene (5) in turn could also be obtained by ortho lithiation of 1 with LDA but by quenching with DMF to yield aldehyde 4 first, which then was reduced with NaBH4 to 5. Finally, target compound (l)-1-[(dimethylamino)methyl]-2-(p -tolylsulfinyl)ferrocene (6) was obtained by substitution of the OH group of 5 under mild conditions or directly by ortho lithiation of 1 with lithio-2,4,6-triisopropylbenzene (=2,4,6-triisopropylphenyl)lithium; LTP) followed by quenching with N,N -dimethylmethyleneiminium chloride. At low temperatures, reaction of 1 with LDA leads, via the preferred diastereoisomeric transition state ,exo'- 7 and under extrusion of a (diisopropylamine)lithium complex of type 8, in a highly selective manner, to diastereoisomeric ortho -lithiated chelate (l)- 9 (Scheme,2). The reaction of 1 to 2 is explained by a rearrangement of (l)- 9 to {[S(S)],[4-(lithiomethyl)phenyl]sulfinyl}ferrocene 10, which is acid-catalyzed by coordinated diisopropylamine in complexes of type 8. This rearrangement is not observed if LTP is used as base or, in case LDA is applied, if the electrophile is sufficiently reactive at low temperatures. [source] Hippocampal synaptic transmission and LTP in vivo are intact following bilateral vestibular deafferentation in the ratHIPPOCAMPUS, Issue 4 2010Yiwen Zheng Abstract Numerous studies in animals and humans have shown that damage to the vestibular system in the inner ear results in spatial memory deficits, presumably because areas of the brain such as the hippocampus require vestibular input to accurately represent the spatial environment. Consistent with this hypothesis, studies in animals have demonstrated that complete bilateral vestibular deafferentation (BVD) causes a disruption of place cell firing as well as theta activity. The aim of this study was to investigate whether BVD in rats affects baseline field potentials (field excitatory postsynaptic potentials and population spikes) and long-term potentiation (LTP) in CA1 and the dentate gyrus (DG) of awake freely moving rats up to 43 days post-BVD and of anesthetized rats at 7 months post-BVD. Compared to sham controls, BVD had no significant effect on either baseline field potentials or LTP in either condition. These results suggest that although BVD interferes with the encoding, consolidation, and/or retrieval of spatial memories and the function of place cells, these changes are not related to detectable in vivo decrements in basal synaptic transmission or LTP, at least in the investigated pathways. © 2009 Wiley-Liss, Inc. [source] Long-term treadmill exposure protects against age-related neurodegenerative change in the rat hippocampusHIPPOCAMPUS, Issue 10 2009Rachel M. O'Callaghan Abstract The potential of exercise or environmental enrichment to prevent or reverse age-related cognitive decline in rats has been widely investigated. The data suggest that the efficacy of these interventions as neuroprotectants may depend upon the duration and nature of the protocols and age of onset. Investigations of the mechanisms underlying these neuroprotective strategies indicate a potential role for the neurotrophin family of proteins, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). In this study, we have assessed the effects of 8 months of forced exercise, begun in middle-age, on the expression of long-term potentiation (LTP) and on spatial learning in the Morris water maze in aged Wistar rats. We also assessed these measures in a cage control group and in a group of rats exposed to the stationary treadmill for the same duration as the exercised rats. Our data confirm an age-related decline in expression of LTP and in spatial learning concomitant with decreased expression of NGF and BDNF mRNA in dentate gyrus (DG). The age-related impairments in both plasticity and growth factor expression were prevented in the long-term exercised group and, surprisingly, the treadmill control group. Given the extensive handling that the treadmill control group received and their regular exposure to an environment outside the home cage, this group can be considered to have experienced environmentally enriched conditions when compared with the cage control group. Significant correlations were observed between both learning and LTP and the expression of NGF and BDNF mRNA in the dentate gyrus. We conclude that decreased expression of NGF and BDNF in the dentate gyrus of aged rats is associated with impaired LTP and spatial learning. We suggest that the reversal of these age-related impairments by enrichment and exercise may be linked with prevention of the age-related decline in expression of these growth factors and, furthermore, that enrichment is as efficacious as exercise in preventing this age-related decline. © 2009 Wiley-Liss, Inc. [source] A single application of MK801 causes symptoms of acute psychosis, deficits in spatial memory, and impairment of synaptic plasticity in ratsHIPPOCAMPUS, Issue 2 2008Denise Manahan-Vaughan Abstract Schizophrenia is mostly a progressive psychiatric illness. Although cognitive changes in chronic schizophrenia have been investigated, little is known about the consequences of a single psychotic episode on memory mechanisms and formation. We investigated changes in hippocampal long-term potentiation (LTP) and spatial memory in a rat model of an acute psychotic episode. Application of NMDA receptor antagonists, such as MK801 (dizolcilpine) in rats, have been shown to give rise to an acute and short-lasting behavioral state, which mirrors many symptoms of schizophrenia. Furthermore, NMDA antagonist-intake in humans elicits symptoms of schizophrenia such as hallucinations, delusions, and affective blunting. We therefore treated animals with a single systemic injection of MK801 (5 mg/kg). Increased stereotypy, locomotion, and ataxia were evident immediately after MK801-treatment, with effects disappearing within 24 h. MK801-treatment caused a disruption of prepulse inhibition of the acoustic startle reflex, 1 day but not 7 or 28 days after treatment. These effects were consistent with the occurrence of an acute psychotic episode. LTP was profoundly impaired in freely moving rats 7 days after MK801 application. Four weeks after treatment, a slight recovery of LTP was seen, however marked deficits in long-term spatial memory were evident. These data suggest that treatment with MK801 to generate an acute psychotic episode in rats, gives rise to grave disturbances in synaptic plasticity and is associated with lasting impairments with the ability to form spatial memory. © 2007 Wiley-Liss, Inc. [source] An epigenetic induction of a right-shift in hippocampal asymmetry: Selectivity for short- and long-term potentiation but not post-tetanic potentiationHIPPOCAMPUS, Issue 1 2008Akaysha C. Tang Abstract In humans, it is well established that major psychological functions are asymmetrically represented between the left and right cerebral cortices. The developmental origin of such functional lateralization remains unknown. Using the rat as a model system, we examined whether exposing neonates briefly to a novel environment can differentially affect synaptic plasticity in the left and right hippocampi during adulthood. During the first 3 weeks of life, one half of the pups from a litter spent 3 min daily away from their familiar home environment (Novel) while their littermates remained in that familiar environment (Home). At adulthood (7-months old), post-tetanic potentiation (PTP) of excitatory post-synaptic potentials (EPSPs), a very short-lasting form of plasticity, was greater among the Novel than the Home rats in both left and right hippocampi. In contrast, the novelty-induced increases in short- and long-term potentiation (STP, LTP), two relatively longer-lasting forms of plasticity, were found only in the right hippocampus. These findings demonstrate that a phase-selective asymmetry in hippocampal synaptic plasticity can be induced epigenetically by seemingly small systematic differences in early life environment. The selectivity of this asymmetry for the longer-lasting forms of synaptic plasticity suggests that the observed asymmetry in plasticity may contribute specifically to an asymmetric learning process which, in turn, may contribute to a functional asymmetry in the neocortex. © 2007 Wiley-Liss, Inc. [source] Estradiol enhances long term potentiation in hippocampal slices from aged apoE4-TR miceHIPPOCAMPUS, Issue 12 2007Sung Hwan Yun Abstract Hormone replacement therapy to treat or prevent Alzheimer Disease (AD) in postmenopausal women is controversial because it may pose other health risks such as cancer and thromboembolism. ApoE status is thought to influence the nootropic efficacy of hormone therapy, but findings are neither consistent nor well understood. We used a known in vitro memory model (long-term potentiation, LTP) in aged (24,27 month) female targeted replacement mice expressing human apoE3 or E4 to compare the effects of exogenous estradiol. Recording medial perforant path evoked field potentials in dentate gyrus of hippocampal slices, we found that both strains exhibited comparable basal synaptic transmission as assessed by input/output functions and paired pulse depression, and that these measures were not affected by estradiol. Vehicle-treated groups from both strains showed comparable LTP. Estradiol had no effect on LTP in apoE3-TR, but selectively increased LTP magnitude in apoE4-TR. The estradiol induced enhancement of LTP in aged female apoE4-TR is consistent with recent clinical observations that estrogen replacement decreases AD risk in some women with apoE4. Elucidating the mechanism of this selective enhancement may lead to more informed treatment decisions as well as to the development of safer alternatives to hormone therapy. © 2007 Wiley-Liss, Inc. [source] Polyribosomes are increased in spines of CA1 dendrites 2 h after the induction of LTP in mature rat hippocampal slicesHIPPOCAMPUS, Issue 1 2007Jennifer N. Bourne Abstract Enduring long-term potentiation (LTP) requires immediate protein synthesis, hence we assessed whether more polyribosomes are present in dendritic spines of mature hippocampal dendrites after the induction of LTP. Reconstructions from serial section transmission electron microscopy (sSTEM) revealed more dendritic polyribosomes 2 h posttetanus, relative to low-frequency stimulation (LFS). Polyribosomes were present in spines of all shapes with larger postsynaptic densities after 2 h, suggesting a coordinated local protein synthesis among many synapses to replenish proteins utilized during an earlier phase of LTP. © 2006 Wiley-Liss, Inc. [source] Contribution of NR2A and NR2B NMDA subunits to bidirectional synaptic plasticity in the hippocampus in vivoHIPPOCAMPUS, Issue 11 2006Christopher J. Fox Abstract It has recently been proposed that activation of the NR2A subunit results in Long-term potentiation (LTP) induction, whereas activation of the NR2B subunit results in long-term depression (LTD) induction. The present study undertakes to replicate these findings in vivo to determine if a role for specific subunits in synaptic plasticity can be shown in the intact brain. Field recordings were made from the CA1 subfield of the hippocampus using Schaffer collateral stimulation in anesthetized male Sprague-Dawley rats. Antagonists of the N -methyl- D -aspartate receptors NR2A and NR2B subunits were administered by either intraperitoneal (i.p.) or intrahippocampal (i.h.) injections to assess their involvement in LTP (100 Hz stimuli) and LTD (200 Paired-burst stimuli). i.h. injection of Ro25,6981 (100 ,M) significantly attenuated hippocampal LTP expression and completely blocked LTD expression. When administered i.p., Ro25,6981 (6 mg/kg) again blocked LTD, but did not significantly diminish the expression of LTP. When NVP-AAM077 was administered i.h. (80 ,M) both LTP and LTD were completely abolished. The administration of this compound i.p. (1.2 mg/kg) also significantly attenuated LTP, but did not affect LTD. These data suggest that both NR2A and NR2B subunits can play roles in LTP and LTD in the hippocampus in vivo. © 2006 Wiley-Liss, Inc. [source] |