LPV Systems (lpv + system)

Distribution by Scientific Domains


Selected Abstracts


On linear-parameter-varying (LPV) slip-controller design for two-wheeled vehicles

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 12 2009
Matteo Corno
Abstract This paper describes the application of linear-parameter-varying (LPV) control design techniques to the problem of slip control for two-wheeled vehicles. A nonlinear multi-body motorcycle simulator is employed to derive a control-oriented dynamic model. It is shown that, in order to devise a robust controller with good performance, it is necessary to take into account the dependence of the model on the velocity and on the wheel slip. This dependence is modeled via an LPV system constructed from Jacobian linearizations at different velocities and slip values. The control problem is formulated as a model-matching control problem within the LPV framework; a specific modification of the LPV control synthesis algorithm is proposed to alleviate controller interpolation problems. Linear and nonlinear simulations indicate that the synthesized controller achieves the required robustness and performance. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Gain Scheduled LPV H, Control Based on LMI Approach for a Robotic Manipulator

JOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 12 2002
Zhongwei Yu
A new approach to the design of a gain scheduled linear parameter-varying (LPV) H, controller, which places the closed-loop poles in the region that satisfies the specified dynamic response, for an n -joint rigid robotic manipulator, is presented. The nonlinear time-varying robotic manipulator is modeled to be a LPV system with a convex polytopic structure with the use of the LPV convex decomposition technique in a filter introduced. State feedback controllers, which satisfy the H, performance and the closed-loop pole-placement requirements, for each vertex of the convex polyhedron parameter space, are designed with the use of the linear matrix inequality (LMI) approach. Based on these designed feedback controllers for each vertex, a LPV controller with a smaller on-line computation load and a convex polytopic structure is synthesized. Simulation and experiment results verify that the robotic manipulator with the LPV controller always has a good dynamic performance along with the variations of the joint positions. © 2002 Wiley Periodicals, Inc. [source]


Robust fault detection and isolation for LPV systems under a sensitivity constraint

INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 1 2009
Saverio Armeni
Abstract A novel fault detection and isolation (FDI) filter design method is proposed for linear parameter varying (LPV) systems. The LPV system description can be used to approximate the behavior of nonlinear systems and leads to simple nonlinear FDI designs. The main goal here is to obtain residual generator (RG) filters with enhanced fault transmission dc-gains and large ,, nuisance attenuation. This is achieved using bilinear matrix inequality techniques by exploiting the relevant geometrical properties of the affine LPV description. Finally, it is shown by a nonlinear example that the RG filters designed by the proposed method compare well with alternative approaches including direct nonlinear design methods. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Observer design with guaranteed RMS gain for discrete-time LPV systems with Markovian jumps

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 6 2009
Giuseppe C. Calafiore
Abstract In this paper we consider the problem of designing state observers with guaranteed power-to-power (RMS) gain for a class of stochastic discrete-time linear systems that possess both measurable parameter variations and Markovian jumps in their dynamics. It is shown in the paper that an upper bound on the RMS gain of the observer can be characterized in terms of feasibility of a family of parameter-dependent linear matrix inequalities (LMIs). Any feasible solution to these LMIs can then be used to explicitly construct a parameter-varying jump observer that guarantees the desired performance level. This design framework is then specialized to a problem of state estimation for a linear parameter-varying plant whose state measurements are available through a lossy Bernoulli channel. Two numerical examples illustrate the results. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Integrated fault detection and control for LPV systems

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 3 2009
Heng Wang
Abstract This paper studies the integrated fault detection and control problem for linear parameter-varying systems. A parameter-dependent detector/controller is designed to generate two signals: residual and control signals that are used to detect faults and simultaneously meet some control objectives. The low-frequency faults and certain finite-frequency disturbances are considered. With the aid of the newly developed linearization techniques, the design methods are presented in terms of solutions to a set of linear matrix inequalities. A numerical example is given to illustrate the effectiveness of the proposed methods. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Two-degree-of-freedom controller design for linear parameter-varying systems

ASIAN JOURNAL OF CONTROL, Issue 1 2008
Wei Xie
Abstract A design strategy for linear parameter-varying (LPV) systems is considered in a two-degree-of-freedom (TDOF) control framework. First, a coprime factorization for LPV systems is introduced. Second, based on the coprime factorization, a TDOF control framework of linear timeinvariant systems is extended to that of LPV systems. Good tracking performance and good disturbance rejection are achieved by a feedforward controller and a feedback controller, respectively. Furthermore, each controller design problem can be formulated in terms of a linear matrix inequality related to the L2 gain performance. Finally, a simple design example is illustrated. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society [source]