LHRH Release (lhrh + release)

Distribution by Scientific Domains


Selected Abstracts


Neuroendocrine mechanisms controlling female puberty: new approaches, new concepts

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 1 2006
Sergio R. Ojeda
Summary Sexual development and mature reproductive function are controlled by a handful of neurones that, located in the basal forebrain, produce the decapeptide luteinizing hormone releasing hormone (LHRH). LHRH is released into the portal system that connects the hypothalamus to the pituitary gland and act on the latter to stimulate the synthesis and release of gonadotrophin hormones. The pubertal activation of LHRH release requires coordinated changes in excitatory and inhibitory inputs to LHRH-secreting neurones. These inputs are provided by both transsynaptic and glia-to-neurone communication pathways. Using cellular and molecular approaches, in combination with transgenic animal models and high-throughput procedures for gene discovery, we are gaining new insight into the basic mechanisms underlying this dual control of LHRH secretion and, hence, the initiation of mammalian puberty. Our results suggest that the initiation of puberty requires reciprocal neurone-glia communication involving excitatory amino acids and growth factors, and the coordinated actions of a group of transcriptional regulators that appear to represent a higher level of control governing the pubertal process. [source]


Rapid Action of Oestrogen in Luteinising Hormone-Releasing Hormone Neurones: The Role of GPR30

JOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2009
E. Terasawa
Previously, we have shown that 17,-oestradiol (E2) induces an increase in firing activity and modifies the pattern of intracellular calcium ([Ca2+]i) oscillations with a latency < 1 min in primate luteinising hormone-releasing hormone (LHRH) neurones. A recent study also indicates that E2, the nuclear membrane impermeable oestrogen, oestrogen-dendrimer conjugate, and the plasma membrane impermeable oestrogen, E2 -BSA conjugate, all similarly stimulated LHRH release within 10 min of exposure in primate LHRH neurones, indicating that the rapid action of E2 is caused by membrane signalling. The results from a series of studies further suggest that the rapid action of E2 in primate LHRH neurones appears to be mediated by GPR30. Although the oestrogen receptor antagonist, ICI 182, 780, neither blocked the E2 -induced LHRH release nor the E2 -induced changes in [Ca2+]i oscillations, E2 application to cells treated with pertussis toxin failed to result in these changes in primate LHRH neurones. Moreover, knockdown of GPR30 in primate LHRH neurones by transfection with human small interference RNA for GPR30 completely abrogated the E2 -induced changes in [Ca2+]i oscillations, whereas transfection with control siRNA did not. Finally, the GPR30 agonist, G1, resulted in changes in [Ca2+]i oscillations similar to those observed with E2. In this review, we discuss the possible role of G-protein coupled receptors in the rapid action of oestrogen in neuronal cells. [source]


Neural Circuits Regulating Pulsatile Luteinizing Hormone Release in the Female Guinea-Pig: Opioid, Adrenergic and Serotonergic Interactions

JOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2001
A. C. Gore
Abstract We studied three neurotransmitters involved in the regulation of pulsatile luteinizing hormone (LH) release: opioid peptides, serotonin and norepinephrine, using the ovariectomized guinea-pig. This is an attractive animal model due to the regularity of its LH pulses, enabling any disruptions to be clearly ascertained. In all experiments, a specific agonist or antagonist was administered, either alone or serially to enable detection of interactions, and effects on mean LH concentrations, pulse amplitude and interpulse interval were determined by PULSAR analysis. In the ovariectomized guinea-pig, catecholamines are stimulatory (acting through the ,1 and ,2 but not , receptors, unlike other species), opioids inhibitory and serotonin permissively stimulatory to pulsatile LH release. Stimulatory effects of the opiate antagonist were not blocked by pretreatment with an ,1 - or ,2 -adrenergic antagonist. Similarly, pretreatment with the opiate antagonist did not prevent the suppression of LH release by ,1 and ,2 antagonists. This suggests that, in the guinea-pig, effects of opiates and catecholamines on LH release are exerted by independent pathways to luteinizing hormone releasing hormone (LHRH) neurones. For the opiate,serotonin interactions, pretreatment with the serotonergic antagonist did not block the stimulatory effect of the opiate antagonist on LH release. However, pretreatment with the opiate agonist could not be overcome by the serotonergic agonist. This suggests that the effects of the serotonin system on LHRH release may be indirectly mediated by opioid neurones. Taken together, these studies demonstrate that the three neurotransmitter systems studied are critically involved in normal pulsatile LH release in the female guinea-pig, and demonstrate novel functional relationships between the opioid and the adrenergic and serotonergic systems. [source]


Short-Term Alcohol Administration Alters KiSS-1 Gene Expression in the Reproductive Hypothalamus of Prepubertal Female Rats

ALCOHOLISM, Issue 9 2009
Vinod K. Srivastava
Background:, Kisspeptins bind to the G-protein-coupled receptor (GPR54) to activate hypothalamic luteinizing hormone releasing hormone (LHRH) secretion at the time of puberty. Alcohol (ALC) causes depressed prepubertal LHRH release, resulting in depressed luteinizing hormone (LH) secretion and delayed puberty. Because KiSS-1 and GPR54 are important to the onset of puberty, we assessed the effects of chronic ALC administration on basal expression of these puberty-related genes within the reproductive hypothalamus, as well as hormones and transduction signaling pathways contributing to their activity. Methods:, Immature female rats were fed a liquid diet containing ALC for 6 days beginning when 27 days old. Controls received either companion isocaloric liquid diet or rat chow and water. Animals were decapitated on day 33, in the late juvenile stage of development. Blood was collected for the assessment of serum hormone levels. Brain tissues containing the anteroventral periventricular (AVPV) and arcuate (ARC) nuclei were obtained for assessing expression of specific puberty-related genes and proteins. Results:,KiSS-1 mRNA levels in the AVPV and ARC nuclei were suppressed (p < 0.001) in the ALC-treated rats. GPR54 gene and protein expressions were both modestly increased (p < 0.05) in AVPV nucleus, but not in ARC nucleus. Alcohol exposure also resulted in suppressed serum levels of insulin-like growth factor-1 (IGF-1), LH, and estradiol (E2). As IGF-1, in the presence of E2, can induce expression of the KiSS-1 gene, we assessed the potential for ALC to alter IGF-1 signaling in the reproductive hypothalamus. IGF-1 receptor gene and protein expressions were not altered. However, protein expression of phosphorylated Akt, a transduction signal used by IGF-1, was suppressed in the AVPV (p < 0.05) and ARC (p < 0.01) nuclei. Conclusions:, Alcohol causes suppressed KiSS-1 gene expression in the reproductive hypothalamus; hence, contributing to this drug's ability to cause suppressed LHRH secretion and disruption of the pubertal process. We suggest that this action, at least in part, is through altered IGF-1 signaling. [source]