Home About us Contact | |||
LH Secretion (lh + secretion)
Selected AbstractsNeuropeptide Y (NPY) Delays the Oestrogen-Induced Luteinizing Hormone (LH) Surge in the Ovariectomized Ewe: Further Evidence That NPY has a Predominant Negative Effect on LH Secretion in the EweJOURNAL OF NEUROENDOCRINOLOGY, Issue 11 2003K. M. Estrada Abstract Studies in rats suggest that neuropeptide Y (NPY) plays a stimulatory role in the generation of the preovulatory luteinizing hormone (LH) surge, via the Y1 receptor. We have investigated this issue using the oestradiol benzoate (EB)-treated ovariectomized (OVX) ewe which is a model for the preovulatory LH surge. A Y1 receptor antagonist (BIBO3304) was infused (25 µg/h) into the third cerebral ventricle (III-V) from 2 h before EB injection for 24 h, and had no effect on the ensuing LH surge. Using in situ hybridization, we then examined expression of NPY mRNA in the arcuate nucleus during the luteal, follicular and oestrous phases of the oestrous cycle, and found that levels were greatest during the luteal phase. Thus, reduced NPY synthesis might be an integral factor in the events leading to the cyclic preovulatory LH surge. This was tested by infusion of NPY (25 µg/h) into the III-V (as above). The NPY infusion delayed the LH surge until the infusion was ceased. High levels of NPY expression during the luteal phase of the oestrous cycle may be caused by progesterone. Thus, we determined whether NPY cells possess progesterone receptors (PR) and whether progesterone treatment up-regulates NPY mRNA expression in the arcuate nucleus. Immunohistochemistry for NPY and PR was performed in OVX, oestrogen-treated ewes, but no NPY cells of the arcuate nucleus were seen to colocalize PR. In situ hybridization for NPY was performed in OVX and OVX ewes treated with progesterone. There was no significant effect of progesterone treatment on NPY mRNA expression in the arcuate nucleus. We conclude that chronically elevated levels of NPY block the preovulatory surge of gonadotropin-releasing hormone/LH secretion in sheep, but high levels of NPY mRNA expression in the luteal phase of the oestrous cycle cannot be explained by an action of progesterone. [source] Effects of Body Condition and Protein Supplementation on LH Secretion and Luteal Function in SheepREPRODUCTION IN DOMESTIC ANIMALS, Issue 5 2007CA Meza-Herrera Contents In ruminants, nutrition is one of the exogenous inputs affecting reproductive function at different levels of the hypothalamic,hypophyseal,gonadal axis. However, the exact mechanisms or even the identification of the signalling metabolic compounds by which nutrition affects reproductive function still need further clarification. The role of static body condition (BC) and its interaction with a short-term protein supplementation (PL), on secretion of metabolic hormones [growth hormone (GH), insulin and insulin-like growth factor-1 (IGF-1)], as well as on secretion of LH and progesterone (P4) was evaluated in sheep. Twenty-four Rambouillet ewes divided into two groups, with lower (LBC) and higher body condition (HBC), were randomly assigned within BC to one of two PL levels: low (LPL, 24% of crude protein; 14 g/animal/day), and high (HPL, 44% of crude protein; 30 g/animal/day). The secretion of GH, insulin, IGF-1 and LH was evaluated on day 10 of the oestrous cycle; appearance and timing of oestrous behaviour were previously detected using rams. Progesterone secretion was evaluated on day 13 of the same cycle. No differences were found (p > 0.05) between PL groups on serum GH concentrations during the sampling period (overall mean of 4.0 ± 0.3 ng/ml), but a trend for lower values in HBC sheep was found (3.6 ± 0.4 vs 4.4 ± 0.4 ng/ml, p = 0.06). A BC effect was observed (p < 0.05) on serum IGF-1 level, with higher values in HBC sheep (p < 0.05). Neither BC nor PL affected (p > 0.05) secretion of LH and the number of corpora lutea, nor serum P4 and insulin concentrations. Results indicate a predominance of the static component of nutrition on sheep metabolic hormone responses, GH and IGF-1, with no effect of short-term PL on secretion of pituitary and ovarian hormones as well as luteal number and activity. [source] Letrozole normalizes serum testosterone in severely obese men with hypogonadotropic hypogonadismDIABETES OBESITY & METABOLISM, Issue 3 2005H. De Boer Background:, Morbid obesity is associated with increased estradiol production as a result of aromatase-dependent conversion of testosterone to estradiol. The elevated serum estradiol levels may inhibit pituitary LH secretion to such extent that hypogonadotropic hypogonadism can result. Normalization of the disturbed estradiol-testosterone balance may be beneficial to reverse the adverse effects of hypogonadism. Aim:, To examine whether aromatase inhibition with Letrozole can normalize serum testosterone levels in severely obese men with hypogonadotropic hypogonadism. Patients and Methods:, Ten severely obese men, mean age 48.2 ± 2.3 (s.e.) years and body mass index 42.1 ± 2.6 kg/m2, were treated with Letrozole for 6 weeks in doses ranging from 7.5 to 17.5 mg per week. Results:, Six weeks of treatment decreased serum estradiol from 120 ± 20 to 70 ± 9 pmol/l (p = 0.006). None of the subjects developed an estradiol level of less than 40 pmol/l. LH increased from 4.5 ± 0.8 to 14.8 ± 2.3 U/l (p < 0.001). Total testosterone rose from 7.5 ± 1.0 to 23.8 ± 3.0 nmol/l (p < 0.001) without a concomitant change in sex hormone-binding globulin level. Those treated with Letrozole 17.5 mg per week had an excessive LH response. Conclusion:, Short-term Letrozole treatment normalized serum testosterone levels in all obese men. The clinical significance of this intervention remains to be established in controlled, long-term studies. [source] Noradrenaline Involvement in the Negative-Feedback Effects of Ovarian Steroids on Luteinising Hormone SecretionJOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2009C. V. V. Helena Noradrenaline has been shown to modulate the ovarian-steroid feedback on luteinising-hormone (LH) release. However, despite the high amount of evidence accumulated over many years, the role of noradrenaline in LH regulation is still not clearly understood. The present study aimed to further investigate the involvement of noradrenaline in the negative-feedback effect of oestradiol and progesterone on basal LH secretion. In experiment 1, ovariectomised (OVX) rats received a single injection of oil, oestradiol, or progesterone at 09.00,10.00 h and were decapitated 30 or 60 min later. Levels of noradrenaline and its metabolite, 3-methoxy-4-hydroxyphenylglycol (MHPG), were determined in microdissections of the preoptic area (POA) and medial basal hypothalamus-median eminence (MBH-ME) and correlated with LH secretion. Basal LH levels were decreased 30 and 60 min after oestradiol or progesterone injection, and this hormonal response was significantly correlated with a reduction in POA MHPG levels, which reflect noradrenaline release. In addition, noradrenaline levels in the POA were increased, whereas noradrenaline turnover (MHPG/noradrenaline ratio) was decreased 60 min after the injection of both hormones. No effect was found in the MBH-ME. In experiment 2, i.c.v. administration of noradrenaline (60 nmol), performed 15 min before oestradiol or progesterone injection in jugular vein-cannulated OVX rats, completely prevented the ovarian steroid-induced inhibition of LH secretion. The data obtained provide direct evidence that LH secretion in OVX rats is positively regulated by basal noradrenergic activity in the POA, and its reduction appears to play a role in the negative-feedback effect of ovarian steroids on LH secretion in vivo. [source] Gonadotrophin-Releasing Hormone Pulse Generator Activity in the Hypothalamus of the GoatJOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2009S. Ohkura Pulsatile release of gonadotrophin-releasing hormone (GnRH) is indispensable to maintain normal gonadotrophin secretion. The pulsatile secretion of GnRH is associated with synchronised electrical activity in the mediobasal hypothalamus (i.e. multiple unit activity; MUA), which is considered to reflect the rhythmic oscillations in the activity of the neuronal network that drives pulsatile GnRH secretion. However, the cellular source of this ultradian rhythm in GnRH activity is unknown. Direct input from kisspeptin neurones in the arcuate nucleus (ARC) to GnRH cell bodies in the medial preoptic area or their terminals in the median eminence could be the intrinsic source for driving the GnRH pulse generator. To determine whether kisspeptin signalling could be responsible for producing pulsatile GnRH secretion, we studied goats, measured plasma levels of luteinising hormone (LH) and recorded MUA in the posterior ARC, where the majority of kisspeptin neuronal cell bodies are located. Rhythmic volleys of MUA were found to be accompanied by LH pulses with regular intervals in the ARC, where kisspeptin neuronal cell bodies were found. Exogenous administration of kisspeptin stimulated a sustained increase in LH secretion, without influencing MUA, suggesting that the GnRH pulse generator, as reflected by MUA, originated from outside of the network of GnRH neurones, and could plausibly reflect the pacemaker activity of kisspeptin neurones, whose projections reach the median eminence where GnRH fibres project. These observations suggest that the kisspeptin neurones in the ARC may be the intrinsic source of the GnRH pulse generator. [source] GPR30 Differentially Regulates Short Latency Responses of Luteinising Hormone and Prolactin Secretion to OestradiolJOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2009D. Lebesgue Rapid, nongenomic actions of 17,-oestradiol (E2) on hypothalamic neurones that may be relevant to reproductive function were described decades ago. The orphan G protein-coupled receptor, GPR30, was recently shown to bind oestrogens and to trigger rapid signalling in vitro, and is expressed in several rat and human brain regions, including the hypothalamus. We used two complementary approaches to investigate the role of GPR30 in hypothalamic responses to E2 that are relevant to reproductive physiology. Serial blood sampling after the acute administration of the selective GPR30 agonist G1 was used to assess the role of GPR30 in short latency negative-feedback inhibition of luteinising hormone (LH) secretion and facilitation of prolactin secretion in ovariohysterectomised female rats. In vivo RNA interference (RNAi), mediated by adeno-associated virus-expressing small hairpin RNA (shRNA) infused into the mediobasal hypothalamus, was used to study the effects of GPR30 knockdown on these rapid responses to E2. Longer-term actions of E2 on female sexual behaviour (lordosis) were also examined in female rats subjected to in vivo RNAi. Administration of E2 or G1 triggered a short latency surge of prolactin secretion, and animals subjected to GPR30 RNAi showed significantly less E2 -dependent prolactin release than animals receiving control virus. G1 did not mimic E2 negative-feedback inhibition of LH secretion, and GPR30 RNAi did not interfere with E2 suppression of LH or facilitation of lordosis behaviour. These findings suggest that activation of GPR30 promotes short latency prolactin secretion but does not mediate E2 negative-feedback inhibition of LH secretion or E2 facilitation of female reproductive behaviour. [source] Central GABAA but not GABAB Receptors Mediate Suppressive Effects of Caudal Hindbrain Glucoprivation on the Luteinizing Hormone Surge in Steroid-Primed, Ovariectomized Female RatsJOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2005S. R. Singh Abstract The neurochemical mechanisms that link caudal hindbrain glucoprivic-,sensitive' neurones with the forebrain gonadotrophin-releasing hormone (GnRH)-pituitary luteinizing hormone (LH) axis remain unclear. Available studies indicate that the amino acid neurotransmitter, ,-aminobutyric acid (GABA), inhibits reproductive neuroendocrine function, and that caudal fourth ventricular administration of the glucose antimetabolite, 5-thioglucose (5TG), enhances GABA turnover within discrete septopreoptic structures that regulate LH secretion. The current experiments utilized the selective GABAA and GABAB receptor antagonists, bicuculline and phaclofen, as pharmacological tools to investigate whether one or both receptor subtypes function within neural pathways that suppress GnRH neuronal transcriptional activation and LH release during central glucose deficiency. During the ascending phase of the afternoon LH surge, groups of steroid-primed, ovariectomized female Sprague-Dawley rats were pretreated by lateral ventricular administration of bicuculline, phaclofen, or vehicle only, before fourth ventricular injection of 5TG or vehicle. The data indicate that, 2 h after 5TG treatment, Fos immunoexpression by rostral preoptic GnRH neurones and plasma LH levels were diminished relative to the vehicle-treated controls, and that inhibitory effects of 5TG on these parameters were attenuated by pretreatment with bicuculline, but not phaclofen. These results demonstrate that central GABAA, but not GABAB receptor stimulation during hindbrain glucoprivation, is required for maximal inhibition of reproductive neuroendocrine function by this metabolic challenge. The current studies thus reinforce the view that central GABAergic neurotransmission mediates regulatory effects of central glucoprivic signalling on the GnRH-pituitary LH axis. [source] Inhibition by Lipopolysaccharide of Naloxone-Induced Luteinising Hormone Secretion Is Accompanied by Increases in Corticotropin-Releasing Factor Immunoreactivity in Hypothalamic Paraventricular Neurones in Female RatsJOURNAL OF NEUROENDOCRINOLOGY, Issue 2 2005D. He Abstract We have recently reported that lipopolysaccharide (LPS), a bacterial endotoxin, inhibits steroid-induced as well as naloxone-induced luteinising hormone (LH) secretion in ovariectomised oestrogen-primed rats. In the present study, we examined whether corticotropin-releasing factor (CRF) may be involved in the LPS-induced inhibition of LH secretion. Unanaesthetised rats were treated with an intravenous (i.v.) injection of LPS (10 µg) or saline, followed by an i.v. injection of naloxone (20 mg/kg). After sequential blood samples were collected for determination of serum LH concentrations, the brains were fixed and CRF-immunoreactivity was examined histochemically. In control rats receiving saline injections, only a small number of CRF-immunoreactive (ir) cells were found in the parvocellular portion of the hypothalamic paraventricular nucleus (PVN), and naloxone significantly increased serum LH concentrations within 10 min. By contrast, in LPS-treated rats, the number of CRF-ir cells was significantly greater than that in control rats, and the effect of naloxone was completely abolished. In a separate experiment, an intracerebroventricular injection of 5 µg CRF inhibited naloxone-induced LH release, mimicking the effect of LPS. These results suggest that LPS stimulates production of CRF in PVN neurones, which in turn inhibits LH secretion without opioidergic mediation. [source] Targeted Cytotoxic Analogue of Luteinizing Hormone-Releasing Hormone (LH-RH) Only Transiently Decreases the Gene Expression of Pituitary Receptors for LH-RHJOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2002M. Kovacs Abstract A cytotoxic analogue of LH-RH, AN-207, consisting of 2-pyrrolinodoxorubicin (AN-201) linked to carrier [D-Lys6]LH-RH, was developed for targeted therapy of cancers expressing LH-RH-receptors. To determine its possible side-effects on the pituitary gland, we investigated the gene expression of pituitary LH-RH-receptors and LH secretion in ovariectomized female and normal male rats after treatment with the maximum tolerated dose of AN-207. The effect of AN-207 on the gene expression of the pituitary GH-RH-receptors and GH secretion was also assessed in male rats. Five hours after a single i.v. injection of AN-207 at 175 nmol/kg, there was a 39,51% decrease in mRNA expression for the pituitary LH-RH-receptors in male and female rats. The carrier, at an equimolar dose, caused a similar reduction (37,39%), whereas the cytotoxic radical AN-201, at an equitoxic dose (110 nmol/kg), produced only a 12,24% decrease (NS) in the mRNA expression of LH-RH-receptors. AN-207 and the carrier analogue induced a comparable 90,100-fold increase in serum LH concentrations in male rats, and the same 12-fold elevation in OVX rats at 5 h. Seven days after treatment with AN-207, the mRNA levels for the LH-RH receptors and the serum LH concentration were back to normal in both sexes. AN-207, the carrier, and AN-201 had no significant effect on the expression of mRNA for GH-RH-receptors in the pituitary. In vitro, a continuous perfusion of pituitary cells with 10 nM AN-207 did not affect the hormone-releasing function of the targeted LH cells or the nontargeted GH cells. Our results demonstrate that cytotoxic LH-RH analogue AN-207, at the maximum tolerated dose causes only a transient decrease in the gene expression of the pituitary LH-RH receptors, and the levels of mRNA for LH-RH receptor fully recover within 7 days. Moreover, the carrier hormone moiety, and not the cytotoxic radical in AN-207 is responsible for this transient suppression. Our findings suggest that the therapy with cytotoxic LH-RH analogues will not inflict permanent damage to pituitary function. [source] Effect of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf.) hull extracts on testosterone release from rat Leydig cellsPHYTOTHERAPY RESEARCH, Issue 5 2009Shih-Min Hsia Abstract Adlay has been used as a traditional Chinese medicine for the treatment of many diseases. However, few studies have reported the effects of adlay seeds on the endocrine system. In the present study, the effects of methanol extracts of adlay hull (AHM) on testosterone synthesis were studied. Rat Leydig cells were incubated with different reagents including human chorionic gonadotropin, 8-bromo-adenosine-3,,5,-cyclic monophosphate, forskolin, A23187, progesterone and androstenedione in the presence or absence of AHM. The rat anterior pituitary (AP) gland was treated with gonadotropin-releasing hormone (GnRH) in vitro in the presence or absence of AHM, and the concentrations of luteinizing hormone (LH) in the media were measured. AHM decreased testosterone release via the inhibition of (1) the PKA and PKC signal transduction pathways, (2) 17, -HSD enzyme activity in rat Leydig cells, and (3) in vitro GnRH-induced LH secretion. Copyright © 2008 John Wiley & Sons, Ltd. [source] Sex Differences in the Distribution and Abundance of Androgen Receptor mRNA-Containing Cells in the Preoptic Area and Hypothalamus of the Ram and EweJOURNAL OF NEUROENDOCRINOLOGY, Issue 12 2004C. J. Scott Abstract Rams and ewes show a negative-feedback response to peripheral treatment with testosterone, with both sexes having a similar degree of suppression in luteinizing hormone (LH) secretion during the breeding season. At least part of the action of testosterone to suppress gonadotropin-releasing hormone/LH secretion is exerted via interaction with an androgen receptor. The distribution of androgen receptor-containing cells in the hypothalamus has been described for the ram, but similar studies have not been performed in the ewe. In the present study, we tested the hypothesis that levels of androgen receptor mRNA expression in the preoptic area and hypothalamus would be similar in rams and ewes. Perfusion-fixed brain tissue was obtained from adult Romney Marsh ewes (luteal phase) and rams during the breeding season (n = 4/sex). Androgen receptor mRNA expression was quantified in hypothalamic sections by in situ hybridization using an 35S-labelled riboprobe and image analysis. Hybridizing cells were found in the medial preoptic area, bed nucleus of the stria terminalis, anterior hypothalamic area, ventromedial nucleus, arcuate nucleus and premamillary nucleus. The level of androgen receptor mRNA expression was higher in rams than ewes in the rostral preoptic area, caudal preoptic area and rostral portion of the bed nucleus of the stria terminalis, with no sex difference in other regions. The preoptic area and bed nucleus of the stria terminalis are important for reproductive behaviour and the sex differences in androgen receptor mRNA expression at these levels may relate to this. The high level of androgen receptor mRNA expression in the basal hypothalamus, with no sex difference, is consistent with the role of this region in the regulation of gonadotropin secretion. [source] Neuropeptide Y (NPY) Delays the Oestrogen-Induced Luteinizing Hormone (LH) Surge in the Ovariectomized Ewe: Further Evidence That NPY has a Predominant Negative Effect on LH Secretion in the EweJOURNAL OF NEUROENDOCRINOLOGY, Issue 11 2003K. M. Estrada Abstract Studies in rats suggest that neuropeptide Y (NPY) plays a stimulatory role in the generation of the preovulatory luteinizing hormone (LH) surge, via the Y1 receptor. We have investigated this issue using the oestradiol benzoate (EB)-treated ovariectomized (OVX) ewe which is a model for the preovulatory LH surge. A Y1 receptor antagonist (BIBO3304) was infused (25 µg/h) into the third cerebral ventricle (III-V) from 2 h before EB injection for 24 h, and had no effect on the ensuing LH surge. Using in situ hybridization, we then examined expression of NPY mRNA in the arcuate nucleus during the luteal, follicular and oestrous phases of the oestrous cycle, and found that levels were greatest during the luteal phase. Thus, reduced NPY synthesis might be an integral factor in the events leading to the cyclic preovulatory LH surge. This was tested by infusion of NPY (25 µg/h) into the III-V (as above). The NPY infusion delayed the LH surge until the infusion was ceased. High levels of NPY expression during the luteal phase of the oestrous cycle may be caused by progesterone. Thus, we determined whether NPY cells possess progesterone receptors (PR) and whether progesterone treatment up-regulates NPY mRNA expression in the arcuate nucleus. Immunohistochemistry for NPY and PR was performed in OVX, oestrogen-treated ewes, but no NPY cells of the arcuate nucleus were seen to colocalize PR. In situ hybridization for NPY was performed in OVX and OVX ewes treated with progesterone. There was no significant effect of progesterone treatment on NPY mRNA expression in the arcuate nucleus. We conclude that chronically elevated levels of NPY block the preovulatory surge of gonadotropin-releasing hormone/LH secretion in sheep, but high levels of NPY mRNA expression in the luteal phase of the oestrous cycle cannot be explained by an action of progesterone. [source] |