LBL Assembly (lbl + assembly)

Distribution by Scientific Domains


Selected Abstracts


Electrically Conductive Thin Films Prepared from Layer-by-Layer Assembly of Graphite Platelets

ADVANCED FUNCTIONAL MATERIALS, Issue 7 2009
Mubarak Alazemi
Abstract Layer-by-layer (LBL) assembly of carbon nanoparticles for low electrical contact resistance thin film applications is demonstrated. The nanoparticles consist of irregularly shaped graphite platelets, with acrylamide/,, -methacryl-oxyethyl-trimethyl-ammonium copolymer as the cationic binder. Nanoparticle zeta (,,) potential and thereby electrostatic interactions are varied by altering the pH of graphite suspension as well as that of the binder suspension. Film thickness as a function of zeta potential, immersion time, and the number of layers deposited is obtained using Monte Carlo simulation of the energy dispersive spectroscopy measurements. Multilayer film surface morphology is visualized via field-emission scanning electron microscopy and atomic-force microscopy. Thin film electrical properties are characterized using electrical contact resistance measurements. Graphite nanoparticles are found to self-assemble onto gold substrates through two distinct yet overlapping mechanisms. The first mechanism is characterized by logarithmic carbon uptake with respect to the number of deposition cycles and slow clustering of nanoparticles on the gold surface. The second mechanism results from more rapid LBL nanoparticle assembly and is characterized by linear weight uptake with respect to the number of deposition cycles and a constant bilayer thickness of 15 to 21,nm. Thin-film electrical contact resistance is found to be proportional to the thickness after equilibration of the bilayer structure. Measured values range from 1.6,m,,cm,2 at 173,nm to 3.5,m,,cm,2 at 276,nm. Coating volume resistivity is reduced when electrostatic interactions are enhanced during LBL assembly. [source]


Nanocomposite Films Assembled from Genetically Engineered Filamentous Viruses and Gold Nanoparticles: Nanoarchitecture- and Humidity-Tunable Surface Plasmon Resonance Spectra

ADVANCED MATERIALS, Issue 9 2009
Aihua Liu
Nanocomposite films are prepared by layer-by-layer (LBL) assembly of cationic genetically engineered rodlike nontoxic viruses and anionic spherical Au nanoparticles. The cationic viruses electrostatically interact with the anionic Au nanoparticles to drive the LBL assembly. The nanocomposite films exhibit humidity-dependent surface plasmon resonance spectra (see figure). [source]


Intact Pattern Transfer of Conductive Exfoliated Graphite Nanoplatelet Composite Films to Polyelectrolyte Multilayer Platforms,

ADVANCED MATERIALS, Issue 10 2008
Troy R. Hendricks
A simple method for creating patterned conductive multilayered polymer/exfoliated graphite nanoplatelet (xGnP) nanocomposite films is presented, by using the LBL assembly of xGnP and the intact pattern transfer of these films to a substrate. After four bilayers are deposited onto the stamp, conductive patterns can be created on virtually any substrate. [source]


From Cloudy to Transparent: Chain Rearrangement in Hydrogen-Bonded Layer-by-Layer Assembled Films

CHEMPHYSCHEM, Issue 3 2007
Shuguang Yang
Abstract The cloudiness of hydrogen-bonded LBL films assembled from polyvinylpyrrolidone (PVPON) and poly(acrylic acid) (PAA) is studied in detail by two approaches: spectroscopy (Fabry,Pérot fringes) and microscopy (AFM). Fabrication parameters such as temperature, molecular weight, pH value, and rinsing time, have notable influences on film cloudiness. The buildup of the PVPON/PAA film is a two-stage process of adsorption and chain rearrangement. Generally, adsorption is fast, while chain rearrangement is slow. The fast adsorption process traps defects, whereas the relatively slow chain-rearrangement process can not heal the defects in time; therefore, the number of defects continuously increases as LBL assembly proceeds, and a cloudy, heterogeneous film is produced. However, the as-prepared cloudy films become transparent and homogeneous on subsequent annealing in acidic water. UV/Vis spectroscopy and fluid AFM were applied to monitor this transition ex situ and in situ, respectively. It is found that increasing the annealing temperature accelerates the transition from cloudy to transparent, and the transition of the film made from higher molecular weight polymer is slower. [source]


Dendrimer-Functionalized Iron Oxide Nanoparticles for Specific Targeting and Imaging of Cancer Cells,

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2007
H. Wang
Abstract We demonstrated a unique approach that combines a layer-by-layer (LbL) self-assembly method with dendrimer chemistry to functionalize Fe3O4 nanoparticles (NPs) for specific targeting and imaging of cancer cells. In this approach, positively charged Fe3O4 NPs (8.4,nm in diameter) synthesized by controlled co-precipitation of FeII and FeIII ions were modified with a bilayer composed of polystyrene sulfonate sodium salt and folic acid (FA)- and fluorescein isothiocyanate (FI)-functionalized poly(amidoamine) dendrimers of generation 5 (G5.NH2 -FI-FA) through electrostatic LbL assembly, followed by an acetylation reaction to neutralize the remaining surface amine groups of G5 dendrimers. Combined flow cytometry, confocal microscopy, transmission electron microscopy, and magnetic resonance imaging studies show that Fe3O4/PSS/G5.NHAc-FI-FA NPs can specifically target cancer cells overexpressing FA receptors. The present approach to functionalizing Fe3O4 NPs opens a new avenue to fabricating various NPs for numerous biological sensing and therapeutic applications. [source]


Cover Picture: Composite Silica Spheres with Magnetic and Luminescent Functionalities (Adv. Funct.

ADVANCED FUNCTIONAL MATERIALS, Issue 4 2006
Mater.
Abstract Photographs of a colloidal dispersion of composite nanoparticles with magnetic and luminescent functionalities are shown (left, in column), which are schematically illustrated in the main image. As reported by Salgueirińo-Maceira and co-workers on p.,509, such functionalities are imparted by magnetic and semiconductor nanoparticles within a silica matrix. In the absence of a magnetic field the particles are uniformly dispersed, although they accumulate and can be dragged under the influence of a magnetic field. Their movement can be monitored by their photoluminescence. A new class of highly fluorescent, photostable, and magnetic core/shell nanoparticles in the submicrometer size range has been synthesized from a modified Stöber method combined with the layer-by-layer (LbL) assembly technique. Luminescent magnetic nanoparticles are prepared via two main steps. The first step involves controlled addition of tetraethoxysilane to a dispersion of Fe3O4/,-Fe2O3 nanoparticles, which are thereby homogeneously incorporated as cores into monodisperse silica spheres. The second step involves the LbL assembly of polyelectrolytes and luminescent CdTe quantum dots onto the surfaces of the silica-coated magnetite/maghemite particles, which are finally covered with an outer shell of silica. These spherical particles have a typical diameter of 220,±,10,nm and a saturation magnetization of 1.34,emu,g,1 at room temperature, and exhibit strong excitonic photoluminescence. Nanoparticles with such a core/shell architecture have the added benefit of providing a robust platform (the outer silica shell) for incorporating diverse functionalities into a single nanoparticle. [source]


Design and in vitro Biodegradation of Novel Hepatocyte-Targetable (Galactose Polycation/Hemoglobin) Multilayers and Microcapsules

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 12 2009
Fu Zhang
Abstract The formation of novel hepatocyte-targetable and biodegradable polycation/protein multilayers and hollow microcapsules by LbL assembly is reported, in which galactose residues allow for targetability and Hb acts as a main degradable component. The in vitro biodegradability of multilayers via proteases was evaluated in detail on both planar substrates and CaCO3 particles followed by UV-Vis, SEM, and AFM characterizations. The degradation approximately follows an exponential decay, and the relation between the kinetic constant k and the number n of deposited bilayers is well approximated by a power equation. Sustained release of the encapsulated model drug was attained by using enzymatic degradation of hollow capsules. [source]