Home About us Contact | |||
L. Lactis (l + lacti)
Terms modified by L. Lactis Selected AbstractsThe structural comparison of the bacterial PepX and human DPP-IV reveals sites for the design of inhibitors of PepX activityFEBS JOURNAL, Issue 8 2005Pascal Rigolet X-prolyl dipeptidyl aminopeptidases (X-PDAP) are enzymes catalysing the release of dipeptides from the amino termini of polypeptides containing a proline or an alanine at the penultimate position. Involved in various mammalian regulation processes, as well as in chronic human diseases, they have been proposed to play a role in pathogenicity for Streptococci. We compared the structure of X-PDAP from Lactococcus lactis (PepX) with its human counterpart DPP-IV. Despite very different overall folds, the residues most implicated for X-PDAP activity are conserved in the same positions and orientations in both enzymes, thus defining a structural signature for the X-PDAP specificity that crosses the species frontiers of evolution. Starting from this observation, we tested some inhibitors of DPP-IV on PepX activity, for which no specific inhibitor is known. We thus found that PepX was highly sensitive to valine-pyrrolidide with a KI of 9.3 µm, close to that reported in DPP-IV inhibition. We finally used the structure of PepX from L. lactis as a template for computer-based homology modeling of PepX from the pathogenic Streptococcus gordonii. Docking simulations of valine-pyrrolidide into the active site of PepX led to the identification of key residues for a rational drug design against PepX from Streptococci. These results could have applications in human health giving new perspectives to the struggle against pathogens. [source] Oral vaccination of mice against Helicobacter pylori with recombinant Lactococcus lactis expressing urease subunit BFEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 3 2009Qing Gu Abstract To determine whether a protective immune response could be elicited by oral delivery of a recombinant live bacterial vaccine, Helicobacter pylori urease subunit B (UreB) was expressed for extracellular expression in food-grade bacterium Lactococcus lactis. The UreB-producing strains were then administered orally to mice, and the immune response to UreB was examined. Orally vaccinated mice produced a significant UreB-specific serum immunoglobulin G (IgG) response. Specific anti-UreB IgA responses could be detected in the feces of mice immunized with the secreting lactococcal strain. Mice vaccinated orally were significantly protected against gastric Helicobacter infection following a challenge with H. pylori strain SS1. In conclusion, mucosal vaccination with L. lactis expressing UreB produced serum IgG and UreB-specific fecal IgA, and prevented gastric infection with H. pylori. [source] A xylose-inducible expression system for Lactococcus lactisFEMS MICROBIOLOGY LETTERS, Issue 2 2004Anderson Miyoshi Abstract A new controlled production system to target heterologous proteins to cytoplasm or extracellular medium is described for Lactococcus lactis NCDO2118. It is based on the use of a xylose-inducible lactococcal promoter, PxylT. The capacities of this system to produce cytoplasmic and secreted proteins were tested using the Staphylococcus aureus nuclease gene (nuc) fused or not to the lactococcal Usp45 signal peptide. Xylose-inducible nuc expression is tightly controlled and resulted in high-level and long-term protein production, and correct targeting either to the cytoplasm or to the extracellular medium. Furthermore, this expression system is versatile and can be switched on or off easily by adding either xylose or glucose, respectively. These results confirm the potential of this expression system as an alternative and useful tool for the production of proteins of interest in L. lactis. [source] Use of induction promoters to regulate hyaluronan synthase and UDP-glucose-6-dehydrogenase of Streptococcus zooepidemicus expression in Lactococcus lactis: a case study of the regulation mechanism of hyaluronic acid polymerJOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2009J.Z. Sheng Abstract Aims:, To determine the effects of the ratios of hyaluronan synthase expression level to precursor sugar UDP-GlcA biosynthesis ability on the molecular weight (MW) of hyaluronic acid (HA) in recombinant Lactococcus lactis. Methods and Results:, The genes szHasA (hyaluronan synthase gene) and szHasB (UDP-glucose-6-dehydrogenase gene) of Streptococcus zooepidemicus were introduced into L. lactis under the control of nisA promoter and lacA promoter respectively, resulting in a dual-plasmid controlled expression system. The effects of the ratios of hyaluronan synthase expression level to the precursor sugar UDP-GlcA biosynthesis ability under different induction concentration collocations with nisin and lactose on the MW of HA in recombinant L. lactis were determined. The results showed that the final weight-average molecular weight () of HA correlated with the relative ratios of HasA (hyaluronan synthase) expression level to the concentration of UDP-GlcA. Conclusions:, Regulating the relative ratios of HasA expression level to the precursor sugar biosynthesis ability was an efficient method to control the size of HA. Significance and Impact of the Study:, This study put forward a guide to establish an efficacious way to control the size of HA in fermentation. [source] Construction and evaluation of food-grade vectors for Lactococcus lactis using aspartate aminotransferase and , -galactosidase as selectable markersJOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2006V.R. Sridhar Abstract Aims:, We report development of two food-grade cloning vectors for Lactococcus lactis, which utilize either a lactococcal aspartate aminotransferase gene (aspC), or Bifidobacterium longum, -galactosidase gene (aglL) as selectable markers. Methods and Results:, The theta-replicon of lactococcal plasmid, pW563, was combined with aspC and a multiple cloning site. When electroporated into L. lactis JLS400 (AspC,), the resulting vector, pSUW611 (3·9 kbp), restores ability of the mutant to grow in milk thus allowing for selection of the transformants. The vector is stable during 100 generations of nonselective growth (0·2% loss per generation). The second vector, pSUW711 (5·1 kbp), was constructed by exchanging aspC with aglL under the control of usp45 promoter. Lactococcus lactis transformed with pSUW711 produced distinctive colonies within 48,72 h on melibiose-containing plates. Expression of two Lactobacillus helveticus peptidases was attempted using these new vehicles. Introduction of pepN on pSUW611 and pSUW711 into L. lactis led to a sixfold, or 27-fold increase in aminopeptidase activity, respectively. However, no changes in endopeptidase activity were recorded upon transformation with pSUW611 carrying pepO2 under control of three different promoters. Attempts were also made to construct high copy variants of pSUW711. Conclusions:, The aspC and aglL can be employed as food-grade genetic markers for L. lactis. The vectors, pSUW611 and pSUW711, were successfully used to express Lact. helveticus PepN in L. lactis. Significance and Impact of the Study:, Two novel food-grade vectors were developed which provide simple and convenient selection and maintenance in L. lactis. [source] Integrated polymerase chain reaction-based procedures for the detection and identification of species and subspecies of the Gram-positive bacterial genus LactococcusJOURNAL OF APPLIED MICROBIOLOGY, Issue 2 2002Z.Y. Pu Aims:,Five species of the Gram-positive bacterial genus Lactococcus (Lactococcus lactis, L. garvieae, L. plantarum, L. piscium and L. raffinolactis) are currently recognized. The aim of this work was to develop a simple approach for the identification of these species, as well as to differentiate the industrially important dairy subspecies L. lactis subsp. lactis and L. lactis subsp. cremoris. Methods and Results:,Methods were devised based on specific polymerase chain reaction (PCR) amplifications that exploit differences in the sequences of the 16S ribosomal RNA genes of each species, followed by restriction enzyme cleavage of the PCR products. The techniques developed were used to characterize industrial cheese starter strains of L. lactis and the results were compared with biochemical phenotype and DNA sequence data. Conclusions:,The PCR primers designed can be used simultaneously, providing a simple scheme for screening unknown isolates. Strains of L. lactis show heterogeneity in the 16S ribosomal RNA gene sequence. Significance and Impact of the Study:,This work provides an integrated set of methods for differentiation and identification of lactococcal species associated with agricultural, veterinary, medical and processed food industries. [source] Genetically engineered normal flora for oral polypeptide delivery: Dose,absorption responseJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 8 2009Gagan Kaushal Abstract Genetically modified Lactococcus lactis (L. lactis), a probiotic bacterium, able to secrete ,-lactamase (29 kDa), was used as a vector for the oral delivery of ,-lactamase to the rats. Three different doses of L. lactis were administered to the rats, and the resulted ,-lactamase oral bioavailability was studied, and compared to the solution form. The oral administration of 1.2,×,107, 3,×,107, and 8,×,107 colony-forming units of L. lactis led to 145, 209, and 364 mU of ,-lactamase absorbed, and the corresponding bioavailability was 8.7%, 15.5%, and 20.8% based on the in vitro production of ,-lactamase by L. lactis. The oral administration of 504 mU and 1008 mU ,-lactamase free solution resulted in 30 and 47 mU absorbed, a bioavailability of 5.9% and 4.7%, respectively. L. lactis significantly (p,<,0.01) increased the oral bioavailability compared to the free solution form. A significant (p,<,0.01) increase in the MAT value as compared to the solution, demonstrated that L. lactis can be used as a sustained delivery system. In conclusion, there is a linear relationship between L. lactis dose and these absorption PK parameters within L. lactis dose range of the current study. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:2573,2580, 2009 [source] Discrepancies between the phenotypic and genotypic characterization of Lactococcus lactis cheese isolatesLETTERS IN APPLIED MICROBIOLOGY, Issue 6 2006M. De La Plaza Abstract Aims:, The use of randomly amplified polymorphic DNA (RAPD)-PCR fingerprinting and plasmid profiles to determine at the strain level, the similarity of Lactococcus lactis isolates obtained during sampling of traditional cheeses and to verify its correspondence to the selected phenotypic characteristics. Methods and Results:, A total of 45 L. lactis isolates were genotypically analysed by RAPD-PCR fingerprinting and plasmid patterns. Phenotypic traits used to compare strains were proteolytic, acidifying, aminotransferase (aromatic and branched chain aminotransferase) and , -ketoisovalerate decarboxylase (Kivd) activities. The results show that 23 isolates could be grouped in clusters that exhibited 100% identity in both their RAPD and plasmid patterns, indicating the probable isolation of dominant strains during the cheese sampling process. However, there were phenotypic differences between isolates within the same cluster that included the loss of relevant technological properties such as proteinase activity and acidifying capacity or high variation in their amino acid converting enzyme activities. Likewise, the analysis of a specific attribute, Kivd activity, indicated that 7 of 15 isolates showed no detectable activity despite the presence of the encoding (kivd) gene. Conclusion:, Phenotypic differences found between genotypically similar strains of L. lactis strains could be linked to differences in enzymatic expression. Significance and Impact of the Study:, Phenotypic analysis of L. lactis isolates should be considered when selecting strains with new cheese flavour forming capabilities. [source] Lactococcus lactis produces short-chain quinones that cross-feed Group B Streptococcus to activate respiration growthMOLECULAR MICROBIOLOGY, Issue 5 2008Lahcen Rezaļki Summary Quinones are essential components of the respiration chain that shuttle electrons between oxidoreductases. We characterized the quinones synthesized by Lactococcus lactis, a fermenting bacterium that activates aerobic respiration when a haem source is provided. Two distinct subgroups were characterized: Menaquinones (MK) MK-8 to MK-10, considered as hallmarks of L. lactis, are produced throughout growth. MK-3 and demethylMK-3 [(D)MK-3] are newly identified and are present only late in growth. Production of (D)MK-3 was conditional on the carbon sugar and on the presence of carbon catabolite regulator gene ccpA. Electron flux driven by both (D)MK fractions was shared between the quinol oxidase and extracellular acceptors O2, iron and, with remarkable efficiency, copper. Purified (D)MK-3, but not MK-8,10, complemented a menB defect in L. lactis. We previously showed that a respiratory metabolism is activated in Group B Streptococcus (GBS) by exogenous haem and MK, and that this activity is implicated in virulence. Here we show that growing lactococci donate (D)MK to GBS to activate respiration and stimulate growth of this opportunist pathogen. We propose that conditions favouring (D)MK production in dense microbial ecosystems, as present in the intestinal tract, could favour implantation of (D)MK-scavengers like GBS within the complex. [source] Conjugation mediates transfer of the Ll.LtrB group II intron between different bacterial speciesMOLECULAR MICROBIOLOGY, Issue 5 2004Kamila Belhocine Summary Some self-splicing group II introns (ribozymes) are mobile retroelements. These retroelements, which can insert themselves into cognate intronless alleles or ectopic sites by reverse splicing, are thought to be the evolutionary progenitors of the widely distributed eukaryotic spliceosomal introns. Lateral or horizontal transmission of introns (i.e. between species), although never experimentally demonstrated, is a well-accepted model for intron dispersal and evolution. Horizontal transfer of the ancestral bacterial group II introns may have contributed to the dispersal and wide distribution of spliceosomal introns present in modern eukaryotic genomes. Here, the Ll.LtrB group II intron from the Gram-positive bacterium Lactococcus lactis was used as a model system to address the dissemination of introns in the bacterial kingdom. We report the first experimental demonstration of horizontal transfer of a group II intron. We show that the Ll.LtrB group II intron, originally discovered on an L. lactis conjugative plasmid (pRS01) and within a chromosomally located sex factor in L. lactis 712, invades new sites using both retrohoming and retrotransposition pathways after its transfer by conjugation. Ll.LtrB lateral transfer is shown among different L. lactis strains (intraspecies) (retrohoming and retrotransposition) and between L. lactis and Enterococcus faecalis (interspecies) (retrohoming). These results shed light on long-standing questions about intron evolution and propagation, and demonstrate that conjugation is one of the mechanisms by which group II introns are, and probably were, broadly disseminated between widely diverged organisms. [source] |