L1

Distribution by Scientific Domains
Distribution within Chemistry

Kinds of L1

  • ligand l1
  • protein l1
  • ribosomal protein l1

  • Terms modified by L1

  • l1 background
  • l1 cell adhesion molecule
  • l1 expression
  • l1 influence
  • l1 norm
  • l1 protein

  • Selected Abstracts


    Drosophila NAB (dNAB) is an orphan transcriptional co-repressor required for correct CNS and eye development

    DEVELOPMENTAL DYNAMICS, Issue 1 2003
    Mark Clements
    Abstract The mammalian NAB proteins have been identified previously as potent co-repressors of the EGR family of zinc finger transcription factors. Drosophila NAB (dNAB), like its mammalian counterparts, binds EGR1 and represses EGR1-mediated transcriptional activation from a synthetic promoter. In contrast, dNAB does not bind the Drosophila EGR-related protein klumpfuss. dnab RNA is expressed exclusively in a subset of neuroblasts in the embryonic and larval central nervous system (CNS), as well as in several larval imaginal disc tissues. Here, we describe the creation of targeted deletion mutations in the dnab gene and the identification of additional, EMS-induced dnab mutations by genetic complementation analysis. Null alleles in dnab cause larval locomotion defects and early larval lethality (L1,L2). A putative hypomorphic allele in dnab instead causes early adult lethality due to severe locomotion defects. In the dnab -/- CNS, axon outgrowth/guidance and glial development appear normal; however, a subset of eve+ neurons forms in reduced numbers. In addition, mosaic analysis in the eye reveals that dnab -/- clones are either very small or absent. Similarly, dNAB overexpression in the eye causes eyes to be very small with few ommatidia. These dramatic eye-specific phenotypes will prove useful for enhancer/suppressor screens to identify dnab-interacting genes. © 2002 Wiley-Liss, Inc. [source]


    The L1-CAM, Neuroglian, functions in glial cells for Drosophila antennal lobe development

    DEVELOPMENTAL NEUROBIOLOGY, Issue 8 2008
    Weitao Chen
    Abstract Although considerable progress has been made in understanding the roles of olfactory receptor neurons (ORNs) and projection neurons (PNs) in Drosophila antennal lobe (AL) development, the roles of glia have remained largely mysterious. Here, we show that during Drosophila metamorphosis, a population of midline glial cells in the brain undergoes extensive cellular remodeling and is closely associated with the collateral branches of ORN axons. These glial cells are required for ORN axons to project across the midline and establish the contralateral wiring in the ALs. We find that Neuroglian (Nrg), the Drosophila homolog of the vertebrate cell adhesion molecule, L1, is expressed and functions in the midline glial cells to regulate their proper development. Loss of Nrg causes the disruption in glial morphology and the agenesis of the antennal commissural tract. Our genetic analysis further demonstrates that the functions of Nrg in the midline glia require its ankyrin-binding motif. We propose that Nrg is an important regulator of glial morphogenesis and axon guidance in AL development. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source]


    Effects of locomotor stimulation and protein synthesis inhibition on circadian rhythms in size changes of L1 and L2 interneurons in the fly's visual system

    DEVELOPMENTAL NEUROBIOLOGY, Issue 11 2007
    Elzbieta Kula
    Abstract Axons of monopolar cell interneurons L1 and L2 in the first optic lobe (lamina) of the fly Musca domestica undergo cyclical changes in diameter. These axons swell during the day and shrink during the night. In addition, the axons' size depends on light conditions since they are largest in continuous light (LL), somewhat smaller under day/night (LD) conditions, and smallest under constant darkness (DD). In this study we found that sizes of both cells can further increase in free flying flies under LD conditions, while the visual stimulation alone does not have significant effect on the cross-sectional area of L1 and L2 axons. The stimulation of free flying had no effect on L1 and L2 sizes if it was performed at the beginning of subjective day in LL or DD. Our results indicate that a maximal increase in size of L1 and L2 is observed when stimulation of free flying is synchronized with a fly' daily peak of activity. We also found that protein synthesis is needed to increase size of monopolar cell axons during the day when they normally swell. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source]


    L1, ,1 integrin, and cadherins mediate axonal regeneration in the embryonic spinal cord

    DEVELOPMENTAL NEUROBIOLOGY, Issue 14 2006
    Murray Blackmore
    Abstract Embryonic birds and mammals are capable of axon regeneration after spinal cord injury, but this ability is lost during a discrete developmental transition. We recently showed that changes within maturing neurons, as opposed to changes solely in the spinal cord environment, significantly restrict axon regeneration during development. The developmental changes within neurons that limit axon regeneration remain unclear. One gap in knowledge is the identity of the adhesive receptors that embryonic neurons use to extend axons in the spinal cord. Here we test the roles of L1/NgCAM, ,1 integrin, and cadherins, using a coculture system in which embryonic chick brainstem neurons regenerate axons into an explant of embryonic spinal cord. By in vivo and in vitro methods, we found that brainstem neurons reduce axonal expression of L1 as they mature. Disrupting either L1 or ,1 integrin function individually in our coculture system partially inhibited growth of brainstem axons in spinal cords, while disrupting cadherin function alone had no effect. However, when all three adhesive receptors were blocked simultaneously, axon growth in the spinal cord was reduced by 90%. Using immunohistochemistry and in situ hybridization we show that during the period when neurons lose their regenerative capacity they reduce expression of mRNA for N-cadherin, and reduce axonal L1/NgCAM protein through a post-transcriptional mechanism. These data show that embryonic neurons use L1/NgCAM, ,1 integrin, and cadherin receptors for axon regeneration in the embryonic spinal cord, and raise the possibility that a reduced expression of these essential receptors may contribute to the low-regenerative capacity of older neurons. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]


    Changes within maturing neurons limit axonal regeneration in the developing spinal cord

    DEVELOPMENTAL NEUROBIOLOGY, Issue 4 2006
    Murray Blackmore
    Abstract Embryonic birds and mammals display a remarkable ability to regenerate axons after spinal injury, but then lose this ability during a discrete developmental transition. To explain this transition, previous research has emphasized the emergence of myelin and other inhibitory factors in the environment of the spinal cord. However, research in other CNS tracts suggests an important role for neuron-intrinsic limitations to axon regeneration. Here we re-examine this issue quantitatively in the hindbrain-spinal projection of the embryonic chick. Using heterochronic cocultures we show that maturation of the spinal cord environment causes a 55% reduction in axon regeneration, while maturation of hindbrain neurons causes a 90% reduction. We further show that young neurons transplanted in vivo into older spinal cord can regenerate axons into myelinated white matter, while older axons regenerate poorly and have reduced growth cone motility on a variety of growth-permissive ligands in vitro, including laminin, L1, and N-cadherin. Finally, we use video analysis of living growth cones to directly document an age-dependent decline in the motility of brainstem axons. These data show that developmental changes in both the spinal cord environment and in brainstem neurons can reduce regeneration, but that the effect of the environment is only partial, while changes in neurons by themselves cause a nearly complete reduction in regeneration. We conclude that maturational events within neurons are a primary cause for the failure of axon regeneration in the spinal cord. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]


    Peripheral coding of bitter taste in Drosophila

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2003
    Nicolas Meunier
    Abstract Taste receptors play a crucial role in detecting the presence of bitter compounds such as alkaloids, and help to prevent the ingestion of toxic food. In Drosophila, we show for the first time that several taste sensilla on the prothoracic legs detect bitter compounds both through the activation of specific taste neurons but also through inhibition of taste neurons activated by sugars and water. Each sensillum usually houses a cluster of four taste neurons classified according to their best stimulus (S for sugar, W for Water, L1 and L2 for salts). Using a new statistical approach based on the analysis of interspike intervals, we show that bitter compounds activate the L2 cell. Bitter-activated L2 cells were excited with a latency of at least 50 ms. Their sensitivity to bitter compounds was different between sensilla, suggesting that specific receptors to bitter compounds are differentially expressed among L2 cells. When presented in mixtures, bitter compounds inhibited the responses of S and W, but not the L1 cell. The inhibition was effective even in sensilla where bitter compounds did not activate the L2 cell, indicating that bitter compounds directly interact with the S and W cells. Interestingly, this inhibition occurred with latencies similar to the excitation of bitter-activated L2 cells. It suggests that the inhibition in the W and S cells shares similar transduction pathways with the excitation in the L2 cells. Combined with molecular approaches, the results presented here should provide a physiological basis to understand how bitter compounds are detected and discriminated. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 139,152, 2003 [source]


    Distributions of estrogen receptors alpha and beta in sympathetic neurons of female rats: Enriched expression by uterine innervation

    DEVELOPMENTAL NEUROBIOLOGY, Issue 1 2002
    Elena V. Zoubina
    Abstract Estrogen modulates many features of the sympathetic nervous system, including cell numbers and ganglion synapses, and can induce uterine sympathetic nerve degeneration. However, distributions of estrogen receptors , and , within sympathetic neurons have not been described, and their regulation by target tissue or estrogen levels has not been explored. We used immunofluorescence and retrograde tracing to define estrogen receptor expression in sympathetic neurons at large in pre- and paravertebral ganglia and in those projecting to the uterine horns. Estrogen receptor , immunoreactivity was present in 29 ± 1%, while estrogen receptor , was expressed by 92 ± 1% of sympathetic neurons at large. The proportions of neurons expressing these receptors were comparable in the superior cervical and thoraco-lumbar paravertebral ganglia from T11 through L5, and in the suprarenal, celiac, and superior mesenteric prevertebral ganglia. Injections of FluoroGold into the uterine horns resulted in labeled neurons, with peak occurrences in T13, L1, and the suprarenal ganglion. Uterine-projecting neurons showed small but significantly greater incidence of estrogen receptor , expression relative to the neuronal population at large, whereas the proportion of uterine-projecting neurons with estrogen receptor ,-immunoreactivity was nearly threefold greater. Numbers of estrogen receptor-expressing neurons were not altered by acute estrogen administration. We conclude that the vast majority of sympathetic neurons express estrogen receptor , immunoreactive protein, whereas a smaller, presumably overlapping subset expresses the estrogen receptor ,. Expression of the latter apparently can be enhanced by target-mediated mechanisms. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 14,23, 2002 [source]


    Cross-linguistic transfer of phonological skills: a Malaysian perspective

    DYSLEXIA, Issue 1 2002
    Caroline Gomez
    Abstract This study examined the phonological and reading performance in English of Malaysian children whose home language was Bahasa Malaysia (BM). A sample of 69 Malaysian Standard Two pupils (aged 7,8 years) was selected for the study. Since commencing school at the age of 6 years, the children had been learning to read in BM and had subsequently also been learning to read in English for some 12 months. The study was part of a larger scale research programme that fully recognized the limitations of tests that had not been developed and standardized in Malaysia. Nevertheless, as a first step to developing such tests, a comparison with existing norms for the Phonological Assessment Battery (PhAB) and the Wechsler Objective Reading Dimension (WORD) was undertaken in relation to information about the children's L1 and L2 language competencies. Results showed that the children's performance on PhAB was at least comparable to the UK norms while, not surprisingly, they fared less well on WORD. The results are discussed in terms of L1 and L2 transfer, whereby the transparency of written BM and the structured way in which reading is taught in BM facilitates performance on phonological tasks in English. This has implications for identifying children with phonologically based reading difficulties. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Mixed Aza-Thioether Crowns Containing a 1,10-Phenanthroline Sub-Unit as Neutral Ionophores for Silver Ion

    ELECTROANALYSIS, Issue 24 2002
    Mojtaba Shamsipur
    Abstract Three different recently synthesized aza-thioether crowns containing a 1,10-phenanthroline sub-unit (L1,L3) and a corresponding acyclic ligand (L4) were studied to characterize their abilities as silver ion ionophores in PVC-membrane electrodes. Novel conventional silver-selective electrodes with internal reference solution (CONISE) and coated graphite-solid contact electrodes (SCISE) were prepared based on one of the 15-membered crowns containing two donating S atoms and two phenanthroline-N atoms (L1). The electrodes reveal a Nernstian behavior over wide Ag+ ion concentration ranges (1.0×10,5,1.0×10,1,M for CONISE and 5.0×10,8,4.0×10,2,M for SCISE) and very low limits of detection (8.0×10,6,M for CONISE and 3.0×10,8,M for SCISE). The potentiometric response is independent from pH of the solution in the pH range 3.0,8.0. The electrodes manifest advantages of low resistance, very fast response and, most importantly, good selectivities relative to a wide variety of other cations. The electrodes can be used for at least 2 months (for CONISE) and 4 months for (SCISE) without any appreciable divergence in potentials. The electrodes were used as an indicator electrode in the potentiometric titration of Ag+ ion and in the determination of silver in photographic emulsions and in radiographic and photographic films. [source]


    Effects of crowding on populations of Aedes albifasciatus larvae under laboratory conditions

    ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 2 2000
    Raquel M. Gleiser
    Abstract Aedes (Ochlerotatus) albifasciatus (Macquart 1838) (Diptera: Culicidae) is a neotropical flood water mosquito, incriminated as the main vector of the western equine encephalitis virus, and which affects beef and milk production in central Argentina. The short time required to hatch and develop from egg to adult, usually in temporary pools, suggests a strategy which allows for exploitation of transient pools, thus evading predation and interspecific competition. Under these conditions intra specific competition could represent a major density-dependent source of larval mortality, but the relative importance of density-dependent regulation of mosquito populations has generated controversy. Therefore we examined the effects of larval density on basic population characteristics of Ae. albifasciatus in the laboratory. Larvae were obtained by synchronous hatching of eggs laid by field-trapped females. Emerging larvae (L1) were used to build cohorts of different initial densities, kept in plastic trays with 400 ml of distilled water, and food supplied daily during the first 10 days (0.1 g per larvae day,1). Age-specific development time and specific and relative mortality were estimated, and their relation to initial larval density was assessed through linear and non-linear regressions and correlation analysis. First hatching was registered 3 h after flooding the eggs. Higher levels of pre-adult mortality were detected in groups with higher densities. Specific mortality and average time to enter a stage of L1 to L3 could directly be related to initial larval density, but no significant relations were found for L4 and pupae. Results suggest that crowding could be a factor capable of regulating the density of natural populations of Ae. albifasciatus. [source]


    Intralesional bovine papillomavirus DNA loads reflect severity of equine sarcoid disease

    EQUINE VETERINARY JOURNAL, Issue 4 2010
    R. HARALAMBUS
    Summary Reasons for performing study: Sarcoids are nonmetastasising, yet locally aggressive skin tumours that constitute the most frequent neoplasm in equids. Infection by bovine papillomaviruses types 1 and 2 (BPV-1, BPV-2) has been recognised as major causative factor in sarcoid pathogenesis, but a possible correlation of intralesional virus load with disease severity has not been established thus far. Hypothesis: Given the pathogenic role of BPV-1 and BPV-2 in sarcoid disease, we suggest that intralesional viral DNA concentration may reflect the degree of affection. Methods: Severity of disease was addressed by recording the tumour growth kinetics, lesion number and tumour type for 37 sarcoid-bearing horses and one donkey. Viral load was estimated via quantitative real-time PCR (qPCR) of the E2, E5, L1 and L2 genes from the BPV-1/-2 genome for one randomly selected lesion per horse and correlated with disease severity. Results: Quantitative PCR against E2 identified viral DNA concentrations ranging from 0,556 copies/tumour cell. Of 16 horses affected by quiescent, slowly growing single tumours or multiple mild-type lesions, 15 showed a viral load up to 1.4 copies per cell. In stark contrast, all equids (22/22) bearing rapidly growing and/or multiple aggressive sarcoids had a viral load between 3 and 569 copies per cell. Consistent results were obtained with qPCR against E5, L1 and L2. Conclusions: While tumours of the same clinical type carried variable virus load, confirming that viral titre does not determine clinical appearance, we identified a highly significant correlation between intralesional viral load and disease severity. Potential relevance: The rapid determination of BPV viral load will give a reliable marker for disease severity and may also be considered when establishing a therapeutic strategy. [source]


    Monomeric and Dimeric Copper(II) Complexes of a Pyrrole-Containing Tridentate Schiff-Base Ligand

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 19 2009
    Rongqing Li
    Abstract Three copper(II) complexes of (L1),, [CuL1Cl] (1), [CuL1Br]n (2) and [Cu2(L1)2(,1,3 -NCS)2] (3), and two copper(II) complexes of HL1, [Cu(HL1)X2] (X = Cl,, 4; X = Br,, 5), have been prepared and characterised [where HL1 is the Schiff-base ligand derived from pyrrole-2-carbaldehyde and 2-aminomethylpyridine]. The removal of a chloride ion and deprotonation of [Cu(HL1)Cl2] (4) to form [CuL1Cl] (1) worked well. However, attempts to protonate [CuL1Cl] with HCl to re-form [Cu(HL1)Cl2] were not successful. X-ray structure determinations revealed that 1 is a N3Cl-coordinated square-planar copper(II) monomer [CuL1Cl], whereas 3 is a doubly end-to-end thiocyanate-bridged square-pyramidal copper(II) dimer [Cu2(L1)2(,1,3 -NCS)2]. The structure determinations on 4 and 5 showed that in both cases the copper(II) ion is in a distorted square-planar N2X2 environment, with the pyrrole NH remaining non-deprotonated and uncoordinated. Variable-temperature magnetic susceptibility investigations carried out on the end-to-end thiocyanate doubly bridged square-pyramidal copper(II) dimer 3 showed that no magnetic coupling occurs between the two copper(II) ions; it exhibits Curie-like magnetic behaviour.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


    A Chiral Metal,Organic Framework Based on Heptanuclear Zinc Cores

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 18 2009
    Hai-Yang Liu
    Abstract Two zinc(II) complexes, [Zn9(L1)6(H2O)2]·13.5H2O (1) and [Zn9(L2)6(H2O)3]·C2H5OH·8.5H2O (2), were synthesized. Both 1 and 2 are constructed from molecular building units (MBUs) that contain heptanuclear zinc clusters as cores. By introducing an additional chiral site into the original ligand, we achieved the transformation of the MOF from a nonchiral to a chiral structure, which provides a new strategy for designing chiral compounds. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


    Self-Assembly from Discrete Clusters to 2D Network Based on [Fe(phen)(CN)4], and [Fe(bipy)(CN)4],: Synthesis, Structures and Magnetic Properties

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 14 2009
    Hua Xiang
    Abstract A series of cyanido-bridged complexes {[FeIII(phen) (CN)4]2[NiL1]}·4H2O (1), {[FeIII(bipy)(CN)4]2[NiL1]}·4H2O (2), [FeIII(bipy)(CN)4]2[NiL2] (3), {[FeIII(phen)(CN)4]2[CuL3]}·5H2O (4), {[FeII(phen)(CN)4][Ni(ea)2]}2·2H2O (5), {[FeII(phen)(CN)4] [NiL2]·2H2O}n (6), {[FeIII(bipy)(CN)4]2[Ni(H2O)2]}·6.5H2O}n (7) and {[FeII(bipy)(CN)4][Ni(ea)2]·H2O}n (8) were synthesized using H[Fe(phen)(CN)4]·2H2O and H[Fe(bipy)(CN)4]·2H2O as precursors [L1 = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, L2 = 3,10-bis(2-phenylethyl)-1,3,5,8, 10,12-hexaazacyclotetradecane, L3 = 3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane, phen = 1,10-phenanthroline, bipy = 2,2,-bipyridine, ea = ethanolamine). Complexes 1,4 are trinuclear clusters, and 5 is a tetranuclear square. In 6, the [FeII(phen)(CN)4]2, anions alternately bridge the [NiL2]2+ cations to generate a 1D wavy chain. The structure of 7 possesses a 4,2-ribbonlike chain, which contains a NiII2(CN)4FeIII2 square with each NiII atom shared by two adjacent squares. Each FeII and NiII atom in 8 acts as a three-connected node through the cyanido-bridges to generate a 2D network with a 4,82 topological net. Ferromagnetic couplings are found between the low-spin FeIII ions and the NiII ions through the cyanido groups in 1,3 and 7, and a metamagnetic behavior and a frequency dependence of the out-of-phase ac susceptibility are observed in 7. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


    Toward an Allosteric Metallated Container

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 2 2009
    Helga Szelke
    Abstract Polytopic ligands L1 and L2 in which three 2,2,-bipyridine units are linked to a central tris(pyrid-2-yl)amine (L1) or tris(pyrid-2-yl)methanol (L2) moiety by alkyl spacers were prepared by multistep organic syntheses. The parent tris(pyrid-2-yl)-type ligands were shown to be modest-to-good chelators for Zn2+ and Cu2+ ions in solution, and bi- and tridentate N-coordination was confirmed by crystal structures of CuII and RuII complexes, respectively. FeII and RuII smoothly form stable, cage-like 1:1 complexes with L1 and L2, in which the metal ion is coordinated to the tris(bpy) site of the ligands. The vacant tris(pyrid-2-yl) site of these complexes is, however, a poor donor site for Zn2+ and Cu2+ ions. In addition, FeII modulates the coordination behaviour of the tris(pyrid-2-yl) site toward Zn2+: Whereas tris(5-methylpyrid-2-yl)amine forms a 2:1 complex with Zn2+ in CH2Cl2, [Fe(L1)]2+ forms a 1:1 Zn complex. Spectrophotometric titrations suggest that [Fe(L2)]2+ forms a polynuclear Zn2+ complex in CH2Cl2, possibly involving bridging coordination of the alcohol OH group, which contrasts the smooth formation of a 2:1 complex of the parent tris(pyrid-2-yl)-type ligand with Zn. FeII might therefore be considered as an allosteric effector, which modulates the metal binding properties of the second tris(pyrid-2-yl) site of L1 and L2. Contrary to expectation, Zn2+ and Cu2+ appear to associate weakly with donor atoms directed toward the exterior of the cage-like complexes [Fe(Ln)]2+ and [Ru(L1)]2+, rather than locating in the interior of the container by tripodal coordination to the tris(pyrid-2-yl) site.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


    Synthesis, Protonation and CuII Complexes of Two Novel Isomeric Pentaazacyclophane Ligands: Potentiometric, DFT, Kinetic and AMP Recognition Studies

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 1 2009
    Andrés G. Algarra
    Abstract The synthesis and coordination chemistry of two novel ligands, 2,6,9,12,16-pentaaza[17]metacyclophane (L1) and 2,6,9,12,16-pentaaza[17]paracyclophane (L2), is described. Potentiometric studies indicate that L1 and L2 form a variety of mononuclear complexes the stability constants of which reveal a change in the denticity of the ligand when moving from L1 to L2, a behaviour that can be qualitatively explained by the inability of the paracyclophanes to simultaneously use both benzylic nitrogen atoms for coordination to a single metal centre. In contrast, the formation of dinuclear hydroxylated complexes is more favoured for the paraL2 ligand. DFT calculations have been carried out to compare the geometries and relative energies of isomeric forms of the [CuL]2+ complexes of L1 and L2 in which the cyclophane acts either as tri- or tetradentate. The results indicate that the energy cost associated with a change in the coordination mode of the cyclophane from tri- to tetradentate is moderate for both ligands so that the actual coordination mode can be determined not only by the characteristics of the first coordination sphere but also by the specific interactions with additional nearby water molecules. The kinetics of the acid promoted decomposition of the mono- and dinuclear CuII complexes of both cyclophanes have also been studied. For both ligands, dinuclear complexes convert rapidly to mononuclear species upon addition of excess acid, the release of the first metal ion occurring within the mixing time of the stopped-flow instrument. Decomposition of the mononuclear [CuL2]2+ and [CuHL2]3+ species occurs with the same kinetics, thus showing that protonation of [CuL2]2+ occurs at an uncoordinated amine group. In contrast, the [CuL1]2+ and [CuHL1]3+ species show different decomposition kinetics indicating the existence of significant structural reorganisation upon protonation of the [CuL1]2+ species. The interaction of AMP with the protonated forms of the cyclophanes and the formation of mixed complexes in the systems Cu,L1 -AMP, Cu,L2 -AMP, and Cu,L3 -AMP, where L3 is the related pyridinophane containing the same polyamine chain and 2,6-dimethylpyridine as a spacer, is also reported. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


    Pseudo-Octahedral Schiff Base Nickel(II) Complexes: Does Single Oxidation Always Lead to the Nickel(III) Valence Tautomer?

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 27 2008
    Olaf Rotthaus
    Abstract With the aim of establishing correlations between the ligand structure and the oxidation site in nickel complexes from Schiff base ligands, five ligands and their nickel complexes have been synthesized. The prototypical asymmetric Schiff base ligand HL1 contains both phenol and pyridine pendant arms with a pivotal imine nitrogen atom. Ligands HL2,5 differ from HL1 by either their phenolate para substituent, the hybridization of the pivotal nitrogen atom, and/or the N-donor properties of the pyridine moiety. The five complexes [Ni(L1,5)2] are obtained by treating the corresponding ligands with 0.5 equiv. of Ni(OAc)2·4H2O in the presence of NEt3. X-ray crystal-structure diffraction studies as well as DFT calculations reveal that [Ni(L1,5)2] involves a high-spin nickel(II) ion within a pseudo-octahedral geometry. The two ligands are arranged in a meridional fashion when the pivotal nitrogen atom is an imine {as in [Ni(L1,2)2] and [Ni(L4,5)2]}, while the fac isomer is preferred in [Ni(L3)2] (amino pivotal nitrogen atom). [Ni(L1)2] is characterized by an oxidation potential at ,0.17 V vs. Fc+/Fc. The one-electron-oxidized species [Ni(L1)2]+ exhibits an EPR signal at g = 2.21 attributed to a phenoxyl radical that is antiferromagnetically coupled to a high-spin NiII ion. [Ni(L2)2] differs from [Ni(L1)2] by the phenolate para substituent (a tert -butyl instead of the methoxyl group) and exhibits an oxidation potential that is ca. 0.16 V higher. Compared to [Ni(L1)2]+ the cation [Ni(L2)2]+ exhibits a SOMO that is more localized on the metal atom. The EPR and electrochemical signatures of [Ni(L3)2]+ are similar to those of [Ni(L1)2]+, thus showing that an imino to amino substitution compensates for a methoxy to tert -butyl one. Replacement of the pyridine by a quinoline group in [Ni(L4,5)2] makes the complexes slightly harder to oxidize. The EPR signatures of the cations [Ni(L4,5)2]+ are roughly similar to those of the pyridine analogs [Ni(L1,2)2]+. The oxidation site is thus not significantly affected by changes in the N-donor properties of the terminal imino nitrogen atom.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


    Spectroscopic and Computational Study on New Blue Emitting ReL(CO)3Cl Complexes Containing Pyridylimidazo[1,5- a]pyridine Ligands

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 23 2008
    Claudio Garino
    Abstract The structural and photophysical properties of three new ReL(CO)3Cl complexes (ReL1,ReL3) and their 1-(2-pyridyl)imidazo[1,5- a]pyridine ligands, namely 3-methyl-1-(2-pyridyl)imidazo[1,5- a]pyridine (L1), 1-(2-pyridyl)-3-[4-(trifluoromethyl)phenyl]imidazo[1,5- a]pyridine (L2), and 3-(4-nitrophenyl)-1-(2-pyridyl)imidazo[1,5- a]pyridine (L3), were studied by spectroscopy, X-ray diffraction, and computational methods. ReL1,ReL3 have high-energy singlet emissions arising from a , , ,* ligand-centered state. In oxygen-free acetonitrile solutions, the complexes display dual fluorescence due to intense ligand-centered triplet emission.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


    CO2 Fixation and Activation by CuII Complexes of 5,5,-Terpyridinophane Macrocycles

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 1 2008
    Begoña Verdejo
    Abstract An aza-terpyridinophane receptor containing the polyamine 4,7,10,13-tetraazahexadecane-1,16-diamine linked through methylene groups to the 5,5, positions of a terpyridine unit has been prepared and characterized (L). The acid-base behaviour, CuII speciation and ability to form ternary complexes (CuII -L-carbonate) have been explored by potentiometric titrations in 0.15 M NaClO4 and by UV/Vis and paramagnetic NMR spectroscopy. Comparisons are made with a previously reported terpyridinophane containing the polyamine 4,7,10-triazatridecane-1,13-diamine (L1). For this latter receptor, reductive coupling between indigo and carbon dioxide at indigo-modified electrodes produces carboxylated derivatives via a solid-state reaction under electrochemical activation.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


    Nickel Complexes with N2O Donor Ligands: Syntheses, Structures, Catalysis and Magnetic Studies

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 32 2007
    Jishnunil Chakraborty
    Abstract Two new terephthalato-bridged tetranuclear polymeric NiII complexes, namely [Ni4L41(,-tp-,4 -O)(H2O)2(,-tp-,2 -O)]·2C2H5OH·CH3OH·3H2O (1) and [Ni4L42(,-tp-,4 -O)(H2O)2(,-tp-,2 -O)]·3H2O (2) [L1 = N -(3-aminopropyl)-5-bromosalicylaldimine and L2 = N -(3-aminopropyl)salicylaldimine], are reported along with the syntheses and structures of the dicyanoargentate-bridged polymeric complexes [Ni(L1)(H2O){Ag(CN)2}], (3) and [Ni(L3)(MeOH){Ag(CN)2}], (4) [L3 = N -(3-amino-2,2-dimethylpropyl)-5-bromosalicylaldimine]. All four complexes are found to be effective heterogeneous catalysts for the epoxidation of alkenes such as styrene, ,-methylstyrene and cyclohexene in the presence of tert -butyl hydroperoxide. The variable-temperature magnetic susceptibility measurements (300,2 K) of complex 1 show a fair degree of antiferromagnetic coupling between the NiII centers.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


    Tetranuclear Nickel Complexes Composed of Pairs of Dinuclear LNi2 Fragments Linked by 4,4,-Bipyrazolyl, 1,4-Bis(4,-pyrazolyl)benzene, and 4,4,-Bipyridazine: Synthesis, Structures, and Magnetic Properties

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 20 2007
    Vasile Lozan
    Abstract The ability of the ligands 4,4,-bipyrazolyl (H2bpz), 1,4-bis(4,-pyrazolyl)benzene (H2bpzb), and 4,4,-bipyridazine (bpdz) to link two dioctahedral LNi2 units has been examined. Thefollowing complexes were prepared: [L1NiII2(Hbpz)][BPh4] (6[BPh4]), [L1NiII2(bpdz)][ClO4]2 (7[ClO4]2), [(L1NiII2)2(bpzb)][BPh4]2 (8[BPh4]2), and [(L2NiII2)2(bpz)][BPh4]2 (9[BPh4]2), where (L1)2, and (L2)2, represent macrocyclic hexaaza-dithiophenolate ligands. All complexes have been characterised by UV/Vis spectroscopy, IR spectroscopy, and X-ray crystallography. Whereas (Hbpz), and bpdz in 6[BPh4]2 and 7[ClO4]2 act as bidentate ligands coordinating to only one [LNi2]2+ unit, in 8[BPh4]2 and 9[BPh4]2 the (bpzb)2, and(bpz)2, units are tetradentate linkers. This is qualitatively explained in terms of the absence or presence of steric repulsions between the tBu groups of the supporting ligands and the length of the coligands. The structures of the tetranuclear complexes differ mainly in the distance between the center of the Ni···Ni axes of the isostructural [LNi2] units {14.040(1) Å in 8[BPh4]2, 9.184(1) Å in 9[BPh4]2}. The two Ni2pyrazolato planes in 9[BPh4]2 are coplanar. An analysis of the temperature-dependent magnetic susceptibility data for 9[BPh4]2 reveals the presence of weak ferromagnetic exchange interactions between the NiII ions in the binuclear [L2Ni2] subunits with values for the magnetic exchange constant J1 of 23.97 cm,1 (H = ,2JS1S2). The exchange coupling across the dipyrazolato bridge is less than 0.1 cm,1, suggesting that no significant interdimer exchange coupling occurs in 9[BPh4]2. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


    Metal Ion Complementarity: Effect of Ring-Size Variation on the Conformation and Stability of Lead(II) and Cadmium(II) Complexes with Pendant-Armed Crowns

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 15 2007
    Martín Regueiro-Figueroa
    Abstract The binding tendencies of the pendant-armed crown ethers L1,L3 [L1 = N,N, -bis(benzimidazol-2-ylmethyl)-1,7-diaza-12-crown-4, L2 = N,N, -bis(benzimidazol-2-ylmethyl)-1,10-diaza-15-crown-5) and L3 = N,N, -bis(benzimidazol-2-ylmethyl)-4,13-diaza-18-crown-6] towards PbII and CdII have been investigated. The X-ray crystal structure of [Cd(L3)](ClO4)2·EtOH shows that, in the solid state, the CdII ion is eight-coordinate and fits quite well into the crown hole, favouring an anti arrangement of the organic receptor. NMR measurements recorded in acetonitrile solution indicate that increasing the crown size induces a conformational change in the series of CdII complexes. The conformation goes from a syn arrangement for L1 to an anti arrangement for L3, passing through a syn [lrarr2] anti equilibrium in the complex derived from L2. On the contrary, no conformational change was observed for the corresponding PbII complexes, which have a syn conformation in all cases. These results have been confirmed by means of density functional theory (DFT) calculations performed by using the B3LYP model. The binding constants obtained from UV/Vis titration experiments in DMSO solution demonstrate that a decrease in the crown size provokes a 102 -fold enhancement of the stability for this series of CdII complexes, whereas for PbII a gradual decrease of the binding constants is observed. Receptor L1 shows a certain degree of selectivity for CdII over PbII, with a selectivity factor > 102. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


    Receptor versus Counterion: Capability of N,N, -Bis(2-aminobenzyl)-diazacrowns for Giving Endo- and/or Exocyclic Coordination of ZnII

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 13 2007
    Lea Vaiana
    Abstract The structure of ZnII complexes with receptors L1 and L2[L1 = N,N, -bis(2-aminobenzyl)-1,10-diaza-15-crown-5 and L2 = N,N, -bis(2-aminobenzyl)-4,13-diaza-18-crown-6] was studied both in the solid state and in acetonitrile solution. Both receptors form mononuclear ZnII complexes in this solvent, while no evidence for the formation of dinuclear complexes was obtained. This is in contrast with previous investigations that demonstrated the formation of dinuclear complexes of L2 with first-row transition metals such as NiII, CoII and CuII. Compounds of formula [Zn(L1)](ClO4)2 (1), [Zn(L1)](NO3)2·2CH3CN (2), [Zn(L2)](ClO4)2 (3) and [Zn(L2)(NO3)2] (4) were isolated and structurally characterised by X-ray diffraction analyses. L1 forms seven-coordinate ZnII complexes in the presence of both nitrate and perchlorate anions, as a consequence of the good fit between the macrocyclic cavity and the ionic radius of the metal ion. The ZnII ion is deeply buried into the receptor cavity and the anions are forced to remain out of the metal coordination sphere. The cation [Zn(L1)]2+ present in 1 and 2 is one of the very few examples of seven-coordinate Zn complexes. Receptor L2 provides a very rare example of a macrocyclic receptor allowing endocyclic and exocyclic coordination on the same guest cation, depending on the nature of the anion present. Thus, in 3 the ZnII ion is endocyclically coordinated, placed inside the crown hole coordinated to four donor atoms of the ligand in a distorted tetrahedral environment, whereas in 4, the presence of a strongly coordinating anion such as nitrate results in an exocyclic coordination of ZnII, which is directly bound only to the two primarily amine groups of L2 and two nitrate ligands. Spectrophotometric titrations of [Zn(L2)]2+ with tetrabutylammonium nitrate in acetonitrile solution demonstrate the stepwise formation of 1:1 and 1:2 adducts with this anion in acetonitrile solution. The [Zn(L1)]2+, [Zn(L2)]2+ and [Zn(L2)(NO3)2] systems were characterised by means of DFT calculations (B3LYP model). The calculated geometries show an excellent agreement with the experimental structures obtained from X-ray diffraction analyses. Calculated binding energies of the macrocyclic ligands to ZnII are also consistent with the experimental data.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


    Control of Intramolecular Ether-Oxygen Coordination in the Crystal Structure of Copper(II) Complexes With Dipicolylamine-Based Ligands

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 8 2007
    Yuji Mikata
    Abstract Thirteen crystal structures of copper(II) complexes with a series of dipicolylamine (DPA)-derived ligands, N -(2-methoxyethyl)- N,N -bis(2-pyridylmethyl)amine (L1), N -[2-(2-hydroxyethyloxy)ethyl]- N,N -bis(2-pyridylmethyl)amine (L2) and N -(3-methoxypropyl)- N,N -bis(2-pyridylmethyl)amine (L3), have been determined and the factors that control the coordination of the ether-oxygen atom of these ligands to the copper centre are discussed. Complexes that have +1 or +2 charges exhibit coordination of the ether-oxygen atom, whereas neutral complexes in which two anions are bound to the copper(II) centre tend to lose the oxygen coordination. Upon chelation of the oxygen atom, L3 forms a six-membered chelate ring with respect to the 3-aminopropyl ether moiety whereas L1 and L2 form a five-membered chelate. This difference, especially in the nitrate and bromide complexes, determines whether the ether-oxygen atom chelates to the metal centre to give a monocationic complex, or the second anion coordinates to the metal centre to form the ether-free, neutral complex. The terminal anchor hydroxy group of L2 facilitates the ether-oxygen coordination via a hydrogen bond interaction to the donor atom located trans to the aliphatic nitrogen atom in the basal plane. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


    Bulky-Hindrance-Controlled Ligand Transformation from Linked Bis(amidinate) to Linked Imido-Amidinate Promoted by a Mono(cyclopentadienyl)titanium Group

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 23 2006
    Sheng-Di Bai
    Abstract A novel class of silyl-linked bis(amidinate) ligands [SiMe2{NC(Ph)N(2,6-R2Ph)Li}2] [L1 (R = H), L2 (R = Me), and L3 (R = iPr)] reacted with TiCl3(C5H5) to produce the half-sandwich titanium complexes 1, 2, and 3. The molecular structures of 1,3 were confirmed successfully by X-ray crystallography. An unprecedented intramolecular ligand transformation from the linked bis(amidinate) configuration to the linked imido-amidinate configuration took place in the cases of L1 and L2. It was found that the rearrangement process was related to the steric hindrance of the terminal substituents. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]


    Synthesis, Crystal Structure, and Second-Order Nonlinear Optical Properties of Ruthenium(II) Complexes with Substituted Bipyridine and Phenylpyridine Ligands

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 15 2006
    Laurence Labat
    Abstract Two new ruthenium(II) complexes of formula [Ru(bpy)2(L1)][PF6] and [Ru(bpy)2(L2)][PF6]2 are reported. HL1 is a (nitrophenyl)ethenyl-substituted phenylpyridine ligand, and L2 is the bipyridine analogue of HL1. The X-ray crystal structure of [Ru(bpy)2(L1)][PF6] has been solved, and the compound is found to crystallize in the monoclinic C2/c space group. The electronic spectrum of the cyclometalated derivative [Ru(bpy)2(L1)][PF6] exhibits a low-lying transition that is red-shifted from 454 to 546 nm relative to that of the parent bipyridine-based complex, which reveals an important charge-transfer character. To support this assumption, the nonlinear optical properties were investigated by the hyper-Rayleigh scattering technique and indicate a molecular static hyperpolarizability (,0) equal to 230,×,10,30 cm5,esu,1. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]


    Mono- and Dinuclear CuII and ZnII Complexes of Cyclen-Based Bis(macrocycles) Containing Two Aminoalkyl Pendant Arms of Different Lengths

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 11 2005
    Carmen Anda
    Abstract The basicity and coordination properties towards CuII and ZnII of the bis(macrocycles) L1, L2 and L3 have been investigated by means of potentiometric, 1H NMR and UV/Vis spectroscopic titrations in aqueous solutions. The synthesis of L1 and L3 is also described. The three ligands are composed of two [12]aneN4 units separated by a p- phenylene spacer and differ in the length of the aminoalkyl pendant arms linked to each macrocyclic unit. L1,L3 form mono- and dinuclear complexes in aqueous solutions; in the dinuclear species each metal ion is coordinated by one of the two identical [12]aneN4 ligand moieties, as shown by the crystal structures of the complexes [Cu2L1]Cl4·8H2O, [Zn2L2](ClO4)4 and [Zn2L3](ClO4)4·H2O. In all structures the metal ion is pentacoordinate, and is bound to the four nitrogen donors of the cyclic unit and to the amine group of the side arm. The stability of both the [ML]2+ and [M2L]4+ complexes in aqueous solution decreases in the order L1 > L2 > L3. At the same time, both the [Cu2L]4+ and [Zn2L]4+ complexes show a different ability in proton binding among the three ligands, with the [M2L1]4+ complexes displaying the highest basicity. These results are explained in terms of the decreasing number of nitrogen donors involved in CuII or ZnII binding on passing from L1 to L3; in other words, while in the L1 dinuclear complexes each metal ion is coordinated to the four amine groups of a [12]aneN4 moiety and to the amine group of the side arm, in the L3 ones the metal cations are bound only to the four donor atoms of a cyclic moiety, the aminobutyl group not being coordinated. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


    Tellurated Schiff Bases Formed from {2-[(4-Methoxyphenyl)telluro]ethyl}amine and Bis(2-aminoethyl) Telluride with o -Hydroxyacetophenone: Synthesis and Complexation Reactions with HgII, PdII and RuII , Crystal Structures of the Ligands, [Ru(p -cymene)Cl{H2NCH2CH2TeC6H4 -4-OCH3}]Cl·H2O and [RuCl{4-MeOC6H4TeCH2CH2NHCH(CH3)C6H4 -2-O,}]

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 5 2004
    Raghavendra Kumar P.
    Abstract {2-[(4-Methoxyphenyl)telluro]ethyl}amine and bis(2-aminoethyl) telluride on treatment with o -hydroxyacetophenone gave the Schiff bases 4-MeOC6H4TeCH2CH2N=C(CH3)C6H4 -2-OH (L1) and 2-HOC6H4(CH3)C=NCH2CH2TeCH2CH2N=C(CH3)C6H4 -2-OH (L3), respectively. The reduction of L1 and L3 with NaBH4 resulted in 4-MeOC6H4TeCH2CH2NHCH(CH3)C6H4 -2-OH (L2) and 2-HOC6H4(CH3)CHNHCH2CH2TeCH2CH2NHCH(CH3)C6H4 -2-OH (L4), respectively, which have 1 or 2 chiral centers. The 1H and 13C NMR spectra of L1 to L4 were found to be characteristic. Treatment of L1 with [Ru(p -cymene)Cl2]2 resulted in [Ru(p -cymene)(4-MeOC6H4TeCH2CH2NH2)Cl]Cl·H2O (1) whereas in the reaction of L2 with [Ru(p -cymene)Cl2]2, the p -cymene ligand is lost resulting in [RuCl(L2 -H)] (4). The reactions of L1, L3 and L4 with HgBr2 resulted in complexes of the type [HgBr2·(L)2] while Na2PdCl4 reacted with L1 to give [PdCl(L1 -H)]. The solid-state structures of L1, L3, 1 and 4 were determined by single-crystal X-ray diffraction studies. The very swift formation of the tellurated amine from a tellurated Schiff base (L1) by hydrolysis has been observed for the first time and has resulted in 1. The Ru,N and Ru,Te bond lengths in 1 are 2.142(3) and 2.6371 (4) Å, respectively. The replacement of the p -cymene ligand with a hybrid organotellurium ligand (L2 -H), resulting in 4, is also a first example of its kind. The Ru center in 4 has a square-planar geometry, with the Ru,N, Ru,Te, Ru,O and Ru,Cl bond lengths being 2.041(6), 2.4983(8), 2.058(5) and 2.308(2) Å, respectively. In the crystals of 4 there are secondary intermolecular Te···Cl interactions and intermolecular N,H···O hydrogen bonds. This is the first example in which coordinated Te in a complex is engaged in two intermolecular secondary interactions. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


    Aberrant trajectory of thalamocortical axons associated with abnormal localization of neurocan immunoreactivity in the cerebral neocortex of reeler mutant mice

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2005
    Hong-Peng Li
    Abstract We examined the molecular mechanisms underlying the formation of the thalamocortical pathway in the cerebral neocortex of normal and reeler mutant mice. During normal development of the mouse neocortex, thalamic axons immunoreactive for the neural cell adhesion molecule L1 rarely invaded the cortical plate and ran centered in the subplate which is immunoreactive for neurocan, a brain-specific chondroitin sulfate proteoglycan. On the other hand, in homozygous reeler mutant mice, thalamic axons took an aberrant course to run obliquely through the cortical plate. Injection of bromodeoxyuridine at embryonic day 11 specifically labeled subplate neurons in normal mice, whilst in the reeler neocortex it labeled cells scattered in the cortical plate as well as in the superficial layer (superplate). Neurocan immunoreactivity was associated with the bromodeoxyuridine-positive cells in the superplate, as well as being present in oblique bands within the cortical plate, along which L1-bearing thalamic axons preferentially ran. The present results support our previous hypothesis proposed for normal rats that a heterophilic molecular interaction between L1 and neurocan is involved in determining the thalamocortical pathway within the neocortical anlage [T. Fukuda et al. (1997)Journal of Comparative Neurology, 382, 141,152]. [source]


    Myelination triggers local loss of axonal CNR/protocadherin, family protein expression

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2004
    Hirofumi Morishita
    Abstract The cadherin-related neuronal receptor (CNR)/protocadherin (Pcdh) , family is one of the diverse protocadherin families expressed in developing axons. We observed a strong axonal expression of these proteins at late embryonic and early postnatal stages corresponding to regions where fibers had not yet been myelinated. We therefore followed the postnatal localization of CNR/Pcdh, protein in major axonal tracts, such as the internal capsule, lateral olfactory tract, and optic nerve, and found that its axonal localization was dramatically lost in parallel with the increased expression of myelin markers. Moreover, the hypomyelinated optic nerve tracts of the myelin-deficient Shiverer mouse exhibited elevated levels of CNR/Pcdh, expression. These axonal expression patterns of CNR/Pcdh, in wild-type and Shiverer mice were similar to those of growth associated protein 43 (GAP-43) and L1, both of which are associated with axonal maturation. Thus, myelination may be a trigger for the local loss of axonal CNR/Pcdh, protein, and this process may be important in the maturation of neural circuits. [source]