Home About us Contact | |||
Kinematic Conditions (kinematic + condition)
Selected AbstractsA semi-spectral modelling of landslide tsunamisGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2008Nazmi Postacioglu SUMMARY A new, semi-spectral technique based on integral equations is introduced for the landslide tsunami problem. The technique does not use the shallow water approximation and resolves the dispersive surface wavefield generated by sliding material over a bathymetric profile. The wave scattering due to the bathymetric profile on which the slide occurs is calculated solving an integral equation. On the free surface, the linearized kinematic and dynamic boundary conditions are imposed. Method of images is adopted to solve for a source-sink distribution on the bathymetry to simulate the motion of the landslide and to satisfy the kinematic condition on the sea bottom. An asymptotic relation for the far field is also derived. The application to a landslide tsunami generation scenario in the Sea of Marmara reveals that a thickness H submarine mass failure on the southern rim of the Ç,narc,k Basin would create a wave peak of around 0.5 H on the ,1000 m deep Ç,narc,k Basin. [source] Mobile GPS carrier phase tracking using a novel intelligent dual-loop receiverINTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, Issue 2 2008Wei-Lung Mao Abstract Carrier phase information is necessary for accurate measurements in global positioning system (GPS) applications. This paper presents a novel intelligent GPS carrier tracking loop with variable-bandwidth characteristics for fast acquisition and better tracking capability in the presence of dynamic environments. Our dual-loop receiver is composed of a frequency-locked loop-assisted phase-locked loop structure, the fuzzy controllers (FCs), and the ATAN discriminator functions. The soft-computing FCs provide the time-varying loop gains to perform accurate and reliable control of the dual-loop paradigm. Once the phase dynamic errors become large under kinematic conditions, the fuzzy loop gains increase adaptively and achieve rapid acquisition. On the other hand, when the tracking errors approach zero in the steady state, the loop gains decrease and the corresponding dual-loop receiver returns to a narrowband system. Four types of carrier phase signals, i.e. phase offset, decaying sinusoidal phase jitter, frequency offset, and frequency ramp offset, are considered to emulate realistic mobile circumstances. Simulation results show that our proposed receiver does achieve a superior performance over conventional tracking loops in terms of faster settling time and wider acquisition range while preventing the occurrence of cycle slips. Copyright © 2008 John Wiley & Sons, Ltd. [source] P,T conditions of decompression of the Limpopo high-grade terrane: record from shear zonesJOURNAL OF METAMORPHIC GEOLOGY, Issue 3 2001C. A. Smit Abstract The Southern Marginal Zone of the late Archean Limpopo Belt of southern Africa is an example of a high-grade gneiss terrane in which both upper and lower crustal deformational processes can be studied. This marginal zone consists of large thrust sheets of complexly folded low-strain gneisses, bound by an imbricate system of kilometre-wide deep crustal shear zones characterized by the presence of high-strain gneisses (,primary straight gneisses'). These shear zones developed during the decompression stage of this high-grade terrane. Low- and high-strain gneisses both contain similar reaction textures that formed under different kinematic conditions during decompression. Evidence for the early M1/D1 metamorphic phase (> 2690 Ma) is rarely preserved in low-strain gneisses as a uniform orientation of relict Al-rich orthopyroxene in the matrix and quartz and plagioclase inclusions in the cores of early (M1) Mg-rich garnet porphyroblasts. This rare fabric formed at >,820 °C and >,7.5 kbar. The retrograde M2/D2 metamorphic fabric (2630,2670 Ma) is well developed in high-strain gneisses from deep crustal shear zones and is microscopically recognized by the presence of reaction textures that formed synkinematically during shear deformation: M2 sigmoid-shaped reaction textures with oriented cordierite,orthopyroxene symplectites formed after the early M1 Mg-rich garnet porphyroblasts, and syn-decompression M2 pencil-shaped garnet with oriented inclusions of sillimanite and quartz formed after cordierite under conditions of near-isobaric cooling at 750,630 °C and 6,5 kbar. The symplectites and pencil-shaped garnet are oriented parallel to the shear fabric and in the stretching direction. Low-strain gneisses from thrust sheets show similar M2 decompression cooling and near-isobaric cooling reaction textures that formed within the same P,T range, but under low-strain conditions, as shown by their pseudo-idioblastic shapes that reflect the contours of completely replaced M1 garnet and randomly oriented cordierite,orthopyroxene symplectites. The presence of similar reaction textures reflecting low-strain conditions in gneisses from thrust sheets and high-strain conditions in primary straight gneisses suggests that most of the strain during decompression was partitioned into the bounding shear zones. A younger M3/D3 mylonitic fabric (< 2637 Ma) in unhydrated mylonites is characterized by brittle deformation of garnet porphyroclasts and ductile deformation of the quartz,plagioclase,biotite matrix developed at <,600 °C, as the result of post-decompression shearing under epidote,amphibolite facies conditions. [source] Effects of local thermodynamics and of stellar mass ratio on accretion disc stability in close binariesASTRONOMISCHE NACHRICHTEN, Issue 8 2009G. Lanzafame Abstract Inflow kinematics at the inner Lagrangian point L1, gas compressibility, and physical turbulent viscosity play a fundamental role on accretion disc dynamics and structure in a close binary (CB). Physical viscosity supports the accretion disc development inside the primary gravitational potential well, developing the gas radial transport, converting mechanical energy into heat. The Stellar-Mass-Ratio (SMR) between the compact primary and the secondary star (M1/M2) is also effective, not only in the location of the inner Lagrangian point, but also in the angular kinematics of the mass transfer and in the geometry ofthe gravitational potential wells. In this work we pay attention in particular to the role ofthe SMR, evaluating boundaries, separating theoretical domains in compressibility-viscosity graphs where physical conditions allow a well-bound disc development, as a function ofmass transfer kinematic conditions. In such domains, the lower is the gas compressibility (the higher the polytropic index ,), the higher is the physical viscosity (,) requested. In this work, we show how the boundaries of such domains vary as a function of M1/M2. Conclusions as far as dwarf novae outbursts are concerned, induced by mass transfer rate variations, are also reported. The smaller M1/M2, the shorter the duration of the active-to-quiet and vice-versa transitional phases. Time-scales are of the order of outburst duration of SU Uma, OY Car, Z Cha and SS Cyg-like objects. Moreover, conclusions as far as active-quiet-active phenomena in a CB, according to viscous-thermal instabilities, in accordance to such domains, are also reported (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |