Kindled Rats (kindled + rat)

Distribution by Scientific Domains


Selected Abstracts


Characterization of the anticonvulsant profile and enantioselective pharmacokinetics of the chiral valproylamide propylisopropyl acetamide in rodents

BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2003
Nina Isoherranen
Propylisopropyl acetamide (PID) is a new chiral amide derivative of valproic acid. The purpose of this study was to evaluate the anticonvulsant activity of PID in rodent models of partial, secondarily generalized and sound-induced generalized seizures which focus on different methods of seizure induction, both acute stimuli, and following short-term plastic changes as a result of kindling, and to assess enantioselectivity and enantiomer,enantiomer interactions in the pharmacokinetics and pharmacodynamics of racemic PID and its pure enantiomers in rodents. Anticonvulsant activity of (S)-PID, (R)-PID and racemic PID was evaluated in the 6 Hz psychomotor seizure model in mice, in the hippocampal kindled rat, and in the Frings audiogenic seizure susceptible mouse. The pharmacokinetics of (S)-PID and (R)-PID was studied in mice and rats. In mice (S)-PID, (R)-PID and racemic PID were effective in preventing the 6 Hz seizures with (R)-PID being significantly (P<0.05) more potent (ED50 values 11 mg kg,1, 46 mg kg,1 and 57 mg kg,1 at stimulation intensities of 22, 32 and 44 mA, respectively) than (S)-PID (ED50 values 20 mg kg,1, 73 mg kg,1 and 81 mg kg,1 at stimulation intensities of 22, 32 and 44 mA, respectively). (S)-PID, (R)-PID and racemic PID also blocked generalized seizures in the Frings mice (ED50 values 16 mg kg,1, 20 mg kg,1 and 19 mg kg,1 respectively). In the hippocampal kindled rat a dose of 40 mg kg,1 of (R)- and (S)-PID prevented the secondarily generalized seizure, whereas racemic PID also blocked the expression of partial seizures following an i.p. dose of 40 mg kg,1. Racemic PID also significantly increased the seizure threshold in this model. Mechanistic studies showed that PID did not affect voltage-sensitive sodium channels or kainate-, GABA- or NMDA- evoked currents. The pharmacokinetics of PID was enantioselective following i.p. administration of individual enantiomers to mice, with (R)-PID having lower clearance and longer half-life than (S)-PID. In rats and mice, no enantioselectivity in the pharmacokinetics of PID was observed following administration of the racemate, which may be due to enantiomer,enantiomer interaction. This study demonstrated that PID has both enantioselective pharmacokinetics and pharmacodynamics. The better anticonvulsant potency of (R)-PID in comparison to (S)-PID may be due to its more favorable pharmacokinetic profile. The enhanced efficacy of the racemate over the individual enantiomers in the kindled rat may be explained by a pharmacokinetic enantiomer,enantiomer interaction in rats. This study also showed the importance of studying the pharmacokinetics and pharmacodynamics of chiral drugs following administration of the individual enantiomers as well as the racemic mixture. British Journal of Pharmacology (2003) 138, 602,613. doi:10.1038/sj.bjp.0705076 [source]


Proteomic Identification of the Involvement of the Mitochondrial Rieske Protein in Epilepsy

EPILEPSIA, Issue 3 2005
Heike Junker
Summary:,Purpose: Kindled seizures are widely used to model epileptogenesis, but the molecular mechanisms underlying the attainment of kindling status are largely unknown. Recently we showed that achievement of kindling status in the Sprague,Dawley rat is associated with a critical developmental interval of 25 ± 1 days; the identification of this long, well-defined developmental interval for inducing kindling status makes possible a dissection of the cellular and genetic events underlying this phenomenon and its relation to normal and pathologic brain function. Methods: By using proteomics on cerebral tissue from our new rat kindling model, we undertook a global analysis of protein expression in kindled animals. Some of the identified proteins were further investigated by using immunohistochemistry. Results: We report the identification of a modified variant of the Rieske iron-sulfur protein, a component of the mitochondrial cytochrome bc1 complex, whose isoelectric point is shifted toward more alkaline values in the hippocampus of kindled rats. By immunohistochemistry, the Rieske protein is well expressed in the hippocampus, except in the CA1 subfield, an area of selective vulnerability to seizures in humans and animal models. We also noted an asymmetric, selective expression of the Rieske protein in the subgranular neurons of the dorsal dentate gyrus, a region implicated in neurogenesis. Conclusions: These results indicate that the Rieske protein may play a role in the response of neurons to seizure activity and could give important new insights into the molecular pathogenesis of epilepsy. [source]


A Kindling Model of Pharmacoresistant Temporal Lobe Epilepsy in Sprague,Dawley Rats Induced by Coriaria Lactone and Its Possible Mechanism

EPILEPSIA, Issue 4 2003
Ying Wang
Summary: ,Purpose: The aim of this study was to develop a new animal model of pharmacoresistant temporal lobe epilepsy (TLE) by repeated intramuscular injection of Coriaria lactone (CL) at subthreshold dosages and to explore the mechanisms that might be involved. Methods: Healthy male Sprague,Dawley rats (n = 160) were randomized into four groups during the kindling process: three groups (n = 50 for each group) received CL injection at subthreshold dosages (1.25, 1.5, and 1.75 mg/kg, respectively), and ten received normal saline (NS) injection as a control group. The maximal human adult dosage of carbamazepine (CBZ), valproate (VPA), and phenytoin (PHT) was administered as monotherapy to different groups of kindled rats for 1 month (n = 20 for each group). Changes in EEG recording, seizure number, intensity (expressed as grade 1,5 according to Racine stage), and duration, including spontaneous seizures during different interventions, were compared. The expression of P-170, a multiple drug resistance gene (MDR1) encoding P-glycoprotein, was measured in brain samples from different groups of experimental rats by using an image analysis and measurement system (ImagePro-Plus 4.0). Results: A total of 70 (46.7%) rats were fully kindled with a median of 15 (seven to 20) CL injections. Electrocorticogram (ECoG) including hippocampal (EHG) monitoring revealed the temporal lobe origins of epileptiform potentials, which were consistent with the behavioral changes observed. Spontaneous seizures occurred with frequency and diurnal patterns similar to those of human TLE. The antiepileptic drugs (AEDs) tested lacked a satisfactory seizure control. The maximal P-170 expression was in the kindled rats with AED treatment; the next highest was in the kindled rats without AED intervention. Nonkindled SD rats with CL injection also had increased P-170 expression compared with control SD rats. Conclusions: The study provided a simple and stable animal TLE kindling model with pharmacoresistant properties. The pharmacoresistance observed in the kindled rats to CBZ, VPA, and PHT at maximal human adult dosages together with the increased P-170 expression was a distinct feature of this model. This model might be used in further investigations of the mechanisms involved in pharmacoresistant TLE and for developing new AEDs. [source]


Expression of the Multidrug Transporter P-glycoprotein in Brain Capillary Endothelial Cells and Brain Parenchyma of Amygdala-kindled Rats

EPILEPSIA, Issue 7 2002
Ulrike Seegers
Summary: ,Purpose: Based on data from brain biopsy samples of patients with pharmacoresistant partial epilepsy, overexpression of the multidrug transporter P-glycoprotein (PGP) in brain capillary endothelium has recently been proposed as a potential mechanism of resistance to antiepileptic drugs (AEDs). We examined whether PGP is overexpressed in brain regions of amygdala-kindled rats, a widely used model of temporal lobe epilepsy (TLE), which is often resistant to AEDs. Methods: Rats were kindled by stimulation of the basolateral amygdala (BLA); electrode-implanted but nonkindled rats and naive (not implanted) rats served as controls. PGP was determined by immunohistochemistry either 1 or 2 weeks after the last kindled seizure, by using a monoclonal anti-PGP antibody. Six brain regions were examined ipsi- and contralateral to the BLA electrode: the BLA, the hippocampal formation, the piriform cortex, the substantia nigra, the frontal and parietal cortex, and the cerebellum. Results: In both kindled rats and controls, PGP staining was observed mainly in microvessel endothelial cells and, to a much lesser extent, in parenchymal cells. The distribution of PGP expression across brain regions was not homogeneous, but significant differences were found in both the endothelial and parenchymal expression of this protein. In kindled rats, ipsilateral PGP expression tended to be higher than contralateral expression in several brain regions, which was statistically significant in the piriform cortex and parietal cortex. However, compared with controls, no significant overexpression of PGP in capillary endothelial cells or brain parenchyma of kindled rats was seen in any ipsilateral brain region, including the BLA. For comparison with kindled rats, kainate-treated rats were used as positive controls. As reported previously, kainate-induced seizures significantly increased PGP expression in the hippocampus and other limbic brain regions. Conclusions: Amygdala-kindling does not induce any lasting overexpression of PGP in several brain regions previously involved in the kindling process. In view of the many pathophysiologic and pharmacologic similarities between the kindling model and TLE, these data may indicate that PGP overexpression in pharmacoresistant patients with TLE is a result of uncontrolled seizures but not of the processes underlying epilepsy. It remains to be determined whether transient PGP overexpression is present in kindled rats shortly after a seizure, and whether pharmacoresistant subgroups of kindled rats exhibit an increased expression of PGP. Furthermore, other multidrug transporters, such as multidrug resistance,associated protein, might be involved in the resistance of kindled rats to AEDs. [source]


Anticonvulsant Efficacy of Topiramate in Phenytoin-Resistant Kindled Rats

EPILEPSIA, Issue 4 2000
Elke Reissmüller
Summary: Purpose: We evaluated the anticonvulsant efficacy of topiramate (TPM), a structurally novel antiepileptic drug (AED), in amygdala kindled rats that had been preselected with respect to their response to phenytoin (PHT). Methods: Anticonvulsant response was tested by determining the afterdischarge threshold (ADT;i.e., a sensitive measure for drug effects on focal seizure activity). By repeated testing with the PHT prodrug fosphenytoin (FOS) three groups of kindled rats were separated: rats in which consistent anticonvulsant effects were obtained (PHT responders), rats that showed no anticonvulsant response (PHT nonresponders), and rats with variable responses (variable PHT responders). The latter, largest group was used to evaluate at which doses and pretreatment times TPM exerted significant anticonvulsant effects on ADT. For this purpose, TPM was tested at four doses (20, 40, 80, 160 mg/kg i.p.) and two pretreatment times (1 and 4 h). The most effective treatment protocol was then used for TPM testing in PHT responders and nonresponders. Results: TPM proved to be an effective AED in the kindling model. At 40 mg/kg, significant ADT increases were obtained after both 1 and 4 h after administration. In addition to the effect on focal seizure threshold, seizure severity and duration recorded at ADT were decreased by TPM, indicating that this drug acts on both seizure threshold and seizure spread. In PHT nonresponders, TPM significantly increased ADT, which is in line with its proven efficacy in patients with refractory partial epilepsy in whom phenytoin has failed. However, TPM was more efficacious in increasing ADT in PHT responders than in nonresponders, substantiating that the difference between these groups of kindled rats extends to other AEDs. Repeated testing of kindled rats with TPM indicated that, similar to PHT, there are individual kindled rats without anticonvulsant response to TPM (i.e., TPM nonresponders). Conclusions: The data of this study substantiate that PHT nonresponders are a unique model for the search of new AEDs with improved efficacy in refractory partial epilepsy. [source]


Effects of Vigabatrin on Sleep,Wakefulness Cycle in Amygdala-Kindled Rats

EPILEPSIA, Issue 2 2000
Y. H. Raol
Summary: Purpose: Our aim was to study the effect of prolonged administration of vigabatrin (VGB) on sleep-wakefulness cycle in kindled seizure-induced rats. Methods: Adult male Wistar rats were implanted stereotaxically with electrodes for kindling and polysomnography. The rats were divided into two groups, kindled and VGB-treated kindled rats. VGB was administered intraperitonially every day for 21 days, and polysomnographic recordings were taken after doses 1, 7, 14, and 21. The drug effects were evaluated by comparing the records of kindled and drug-treated kindled rats. Results: The VGB-administered kindled rats showed an increase in total sleep time (TST) due to an increase in total non-rapid eye movement (NREM) and light slow-wave sleep stage I (SI) with a decrease in wakefulness. The number of episodes and REM onset latencies were found to be decreased after drug treatment. Conclusions: It can therefore be concluded that VGB has a somnolence-inducing effect and that it might mediate its anti-convulsant effect by altering sleep architecture through sleep-regulating areas. [source]


The antiepileptic drug levetiracetam selectively modifies kindling-induced alterations in gene expression in the temporal lobe of rats

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2004
Jessie Gu
Abstract Gene expression profiling by microarrays is a powerful tool for identification of genes that may encode key proteins involved in molecular mechanisms underlying epileptogenesis. Using the Affymetrix oligonucleotide microarray, we have surveyed the expression levels of more than 26,000 genes and expressed sequence tags (ESTs) in the amygdala-kindling model of temporal lobe epilepsy. Furthermore, the effect of the antiepileptic drug levetiracetam (LEV) on kindling-induced alterations of gene expression was studied. Treatment of rats with LEV during kindling acquisition significantly suppressed kindling development. For gene expression profiling, six groups of rats were included in the present study: (i) and (ii) sham-operated rats treated with saline or LEV; (iii) and (iv) electrode-implanted but non-kindled rats treated with saline or LEV; (v) and (vi) kindled rats treated with saline or LEV. Treatment was terminated after 11 or 12 daily amygdala stimulations, when all vehicle-treated rats had reached kindling criterion, i.e. a stage 5 seizure. Twenty-four hours later, the ipsilateral temporal lobe was dissected for mRNA preparation. Six temporal lobe preparations from each group were analysed for differential gene expression. In control (non-kindled) rats, LEV treatment was devoid of any significant effect on gene expression. In saline-treated kindled rats, a large number of genes were observed to display mRNA expression alterations compared with non-kindled rats. LEV treatment induced marked effects on gene expression from kindled rats. Previously described epilepsy-related genes, such as neuropeptide Y (NPY), thyrotropin-releasing hormone (TRH) and glial fibrillary acidic protein (GFAP) were confirmed to be up-regulated by kindling and partially normalized by LEV treatment. Real-time quantitative polymerase chain reaction confirmed NPY, TRH and GFAP expression data from chip experiments. Furthermore, a number of novel genes were identified from the gene chip experiments. A subgroup of these genes demonstrated correlation between expression changes and kindled phenotype measurements. In summary, this study identified many genes with potentially important roles in epileptogenesis and highlighted several important issues in using the gene chip technology for the study of animal models of CNS disorders. [source]


Amygdala kindling develops without mossy fiber sprouting and hippocampal neuronal degeneration in rats

PSYCHIATRY AND CLINICAL NEUROSCIENCES, Issue 6 2001
Mariko Osawa MD
Abstract Repeated electrical stimulation of limbic structures has been reported to produce the kindling effect together with morphological changes in the hippocampus such as mossy fiber sprouting and/or neuronal loss. However, to argue against a causal role of these neuropathological changes in the development of kindling-associated seizures, we examined mossy fiber sprouting in amygdala (AM)-kindled rats using Timm histochemical staining, and evaluated the hippocampal neuronal degeneration in AM-kindled rats by terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labelling (TUNEL). Amygdala kindling was established by 10.3 ± 0.7 electrical stimulations, and no increase in Timm granules (neuronal sprouting) was observed up to the time of acquisition of a fully kindled state. However, the density and distribution of Timm granules increased significantly in the dentate gyrus compared with unkindled rats after 29 after-discharges or more than 10 kindled convulsions. In addition, no significant increase in TUNEL-positive cells was found in the hilar polymorphic neurons or in CA3 pyramidal neurons of the kindled rats that had fewer than 29 after-discharges. However, a significant increase of TUNEL-positive cells was found in the granule cell layer in the dentate gyrus of the stimulated side after 18 after-discharges or 10 kindled convulsions. Our result show that AM kindling develops without evidence of mossy fiber sprouting, and that mossy fiber sprouting may appear after repeated kindled convulsions, following death of the granule cells in the dentate gyrus. [source]


Functional significance of stimulatory GTP-binding protein in hippocampus is associated with kindling-elicited epileptogenesis

PSYCHIATRY AND CLINICAL NEUROSCIENCES, Issue 2 2000
Hiroto Iwasa MD
Abstract In order to evaluate the involvement of the stimulatory G-protein (Gs)-related transduction system in the basic mechanisms of epilepsy, we examine the expression levels of Gs, mRNA and specific GTP-binding ability in the hippocampus of amygdaloid-kindled rats at various seizure stages. Northern blot analysis showed a significant increase in the Gs, mRNA expression level in the bilateral hippocampus at 24 h after the last generalized seizure. The [3H]-GTP-binding assay with isoproterenol (IPN), a ,-receptor agonist, revealed a remarkable increase of Bmax values in the sham-operated control and partially kindled groups. However, the IPN-induced increase of Bmax values was abolished on both sides of the hippocampus at 24 h after and at 4 weeks after the last generalized seizure in fully kindled rats. These data suggest that alteration in the Gs function and ,-adrenergic receptor-Gs coupling might be implicated in the neurobiological basis of the induction mechanisms of the generalization of seizures and the mechanisms of the maintenance of enduring epileptogenesis. Conversely, the Gs -related transduction system might have a lesser impact on the acquisition process of epileptogenesis. [source]