Home About us Contact | |||
Kinase Signalling Pathway (kinase + signalling_pathway)
Kinds of Kinase Signalling Pathway Selected AbstractsRole of intracellular Ca2+ and calmodulin/MAP kinase kinase/extracellular signal-regulated protein kinase signalling pathway in the mitogenic and antimitogenic effect of nitric oxide in glia- and neurone-derived cell linesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2006Antonella Meini Abstract To elucidate the mechanism of cell growth regulation by nitric oxide (NO) and the role played in it by Ca2+, we studied the relationship among intracellular Ca2+ concentration ([Ca2+]i), mitogen-activated protein kinases [extracellular signal-regulated protein kinase (ERK)] and proliferation in cell lines exposed to different levels of NO. Data showed that NO released by low [(z)-1-[2-aminiethyl]-N-[2-ammonioethyl]amino]diazen-1-ium-1,2diolate (DETA/NO) concentrations (10 µm) determined a gradual, moderate elevation in [Ca2+]i (46.8 ± 7.2% over controls) which paralleled activation of ERK and potentiation of cell division. Functionally blocking Ca2+ or inhibiting calmodulin or MAP kinase kinase activities prevented ERK activation and antagonized the mitogenic effect of NO. Experimental conditions favouring Ca2+ entry into cells led to increased [Ca2+]i (189.5 ± 4.8%), ERK activation and cell division. NO potentiated the Ca2+ elevation (358 ± 16.8%) and ERK activation leading to expression of p21Cip1 and inhibition of cell proliferation. Furthermore, functionally blocking Ca2+ down-regulated ERK activation and reversed the antiproliferative effect of NO. Both the mitogenic and antimitogenic responses induced by NO were mimicked by a cGMP analogue whereas they were completely antagonized by selective cGMP inhibitors. These results demonstrate for the first time that regulation of cell proliferation by low NO levels is cGMP dependent and occurs via the Ca2+/calmodulin/MAP kinase kinase/ERK pathway. In this effect the amplitude of Ca2+ signalling determines the specificity of the proliferative response to NO possibly by modulating the strength of ERK activation. In contrast to the low level, the high levels (50,300 µm) of DETA/NO negatively regulated cell proliferation via a Ca2+ -independent mechanism. [source] Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathwayJOURNAL OF NEUROCHEMISTRY, Issue 4 2006Melita Salkovic-Petrisic Abstract The insulin-resistant brain state is related to late-onset sporadic Alzheimer's disease, and alterations in the insulin receptor (IR) and its downstream phosphatidylinositol-3 kinase signalling pathway have been found in human brain. These findings have not been confirmed in an experimental model related to sporadic Alzheimer's disease, for example rats showing a neuronal IR deficit subsequent to intracerebroventricular (i.c.v.) treatment with streptozotocin (STZ). In this study, western blot analysis performed 1 month after i.c.v. injection of STZ showed an increase of 63% in the level of phosphorylated glycogen synthase kinase-3,/, (pGSK-3,/,) protein in the rat hippocampus, whereas the levels of the unphosphorylated form (GSK-3,/,) and protein kinase B (Akt/PKB) remained unchanged. Three months after STZ treatment, pGSK-3,/, and Akt/PKB levels tended to decrease (by 8 and 9% respectively). The changes were region specific, as a different pattern was found in frontal cortex. Structural alterations were also found, characterized by ,-amyloid peptide-like aggregates in brain capillaries of rats treated with STZ. Similar neurochemical changes and cognitive deficits were recorded in rats treated with i.c.v. 5-thio- d -glucose, a blocker of glucose transporter (GLUT)2, a transporter that is probably involved in brain glucose sensing. The IR signalling cascade alteration and its consequences in rats treated with STZ are similar to those found in humans with sporadic Alzheimer's disease, and our results suggest a role for GLUT2 in Alzheimer's pathophysiology. [source] RNA interference targeting the platelet-derived growth factor receptor , subunit ameliorates experimental hepatic fibrosis in ratsLIVER INTERNATIONAL, Issue 10 2008Si-Wen Chen Abstract Background/Aims: Platelet-derived growth factor (PDGF) is the strongest stimulator of the proliferation of hepatic stellate cells (HSCs). PDGF receptor , subunit (PDGFR-,) is acquired on HSCs proliferation induced by PDGF. In this study, we aim to investigate the effect of PDGFR-, small interference RNA (siRNA) on experimental hepatic fibrosis. Methods: We constructed a PDGFR-, siRNA expression plasmid and investigated its effect on the activation of HSCs. Bromodeoxyuridine incorporation was performed to investigate the effect of PDGFR-, siRNA on HSCs proliferation. A hydrodynamics-based transfection method was used to deliver PDGFR-, siRNA to rats with hepatic fibrosis. The distribution of transgenes in the liver was observed by immunofluorescence. The antifibrogenic effect of PDGFR-, siRNA was investigated pathologically. Results: Platelet-derived growth factor receptor-, subunit siRNA could significantly downregulate PDGFR-, expression, suppress HSCs activation, block the mitogen-activated protein kinase signalling pathway and inhibit HSCs proliferation in vitro. PDGFR-, siRNA expression plasmid could be delivered into activated HSCs by the hydrodynamics-based transfection method, and remarkably improve the liver function of the rat model induced by dimethylnitrosamine and bile duct ligation. Furthermore, the progression of fibrosis in the liver was significantly suppressed by PDGFR-, siRNA in both animal models. Conclusions: Platelet-derived growth factor receptor-, subunit siRNA may be presented as an effective antifibrogenic gene therapeutic method for hepatic fibrosis. [source] Hybrid Lethality in Interspecific F1 Hybrid Nicotiana gossei×N. tabacum Involves a MAP-Kinases Signalling CascadePLANT BIOLOGY, Issue 3 2007M. Mino Abstract: A cultured cell line, GTH4 (Nicotiana gossei Domin ×N. tabacum L.), which exhibits hybrid lethality, died at 26 °C, but not at 37 °C. Pharmacological experiments using inhibitors of protein phosphatases and protein kinases indicated the involvement of a protein kinase signalling pathway in the cell death process. Immunoblot analysis revealed that salicylic acid-induced protein kinase (SIPK) was phosphorylated soon after the shift in temperature from 37 °C to 26 °C. Cultured cells of the hybrid of N. gossei× transgenic N. tabacum harboring a steroid (dexamethasone; DEX)-inducible NtMEK2DD or NtMEK2KR, constitutively active and inactive forms of NtMEK2, respectively, were established. Induction of NtMEK2DD by DEX in the hybrid cells induced the activation of SIPK, the generation of hydrogen peroxide (H2O2), and cell death at 37 °C. The activation of SIPK, generation of H2O2, and cell death at 26 °C were compromised by DEX treatment in hybrid cells harbouring NtMEK2KR. This study provides evidence for the involvement of MAPK signalling in the regulation of cell death in hybrids. [source] Aberrant BRAF splicing as an alternative mechanism for oncogenic B-Raf activation in thyroid carcinoma,THE JOURNAL OF PATHOLOGY, Issue 5 2009Essa Y Baitei Abstract Activating BRAF mutations have recently been reported in 28,83% of papillary thyroid carcinomas (PTCs). However, it is not known whether aberrant BRAF splicing occurs in thyroid carcinoma. To investigate aberrant BRAF splicing and its association with BRAF mutation in thyroid tumours, we studied aberrant BRAF splicing and BRAF mutation from 68 thyroid tumours. BRAFV600E mutation was detected in 20 of 43 PTCs and all three anaplastic thyroid carcinomas (ATCs). There is a higher frequency of BRAF mutation in PTC patients with stage III and IV tumours compared with stage I and II. Novel BRAF splicing variants were detected in 12 PTCs, three follicular variants of PTC (FVPTCs), and one ATC, as well as in two thyroid carcinoma cell lines, ARO and NPA. These variants did not have the N-terminal auto-inhibitory domain of wild-type B-Raf, resulting in an in-frame truncated protein that contained only the C-terminal kinase domain and caused constitutive activation of B-Raf. These variants were significantly associated with advanced disease stage and BRAFV600E mutation (p < 0.001, Fisher exact test). Furthermore, expression of these variants in NIH3T3 and CHO cells could activate the MAP kinase signalling pathway, transform them in vitro, and induce tumours in nude mice. These data suggest that BRAF splicing variants may function as an alternative mechanism for oncogenic B-Raf activation. Combination of the BRAFV600E mutation and its splicing variants may contribute towards disease progression to poorly differentiated thyroid carcinoma. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source] Structural analysis of an MK2,inhibitor complex: insight into the regulation of the secondary structure of the Gly-rich loop by TEI-I01800ACTA CRYSTALLOGRAPHICA SECTION D, Issue 1 2010Aiko Fujino Mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2 or MK2) is a Ser/Thr kinase from the p38 mitogen-activated protein kinase signalling pathway and plays an important role in inflammatory diseases. The crystal structure of the complex of human MK2 (residues 41,364) with the potent MK2 inhibitor TEI-I01800 (pKi = 6.9) was determined at 2.9,Å resolution. The MK2 structure in the MK2,TEI-I01800 complex is composed of two domains, as observed for other Ser/Thr kinases; however, the Gly-rich loop in the N-terminal domain forms an ,-helix structure and not a ,-sheet. TEI-I01800 binds to the ATP-binding site as well as near the substrate-binding site of MK2. Both TEI-I01800 molecules have a nonplanar conformation that differs from those of other MK2 inhibitors deposited in the Protein Data Bank. The MK2,TEI-I01800 complex structure is the first active MK2 with an ,-helical Gly-rich loop and TEI-I01800 regulates the secondary structure of the Gly-rich loop. [source] Stimulation of DNA synthesis, activation of mitogen-activated protein kinase ERK2 and nuclear accumulation of c-fos in human aortic smooth muscle cells by ketamineCELL PROLIFERATION, Issue 3 2002V. Boulom Proliferation of vascular smooth muscle cells is known to be regulated by autocrine and paracrine stimuli, including extracellular matrix, reactive oxygen species, lipids, and biomechanical forces. The effect of many pharmacological agents to which smooth muscle cells may be exposed, however, is widely unexplored. Ketamine, an intravenous anaesthetic and a phencyclidine derivative, regulates diverse intracellular signalling pathways in smooth muscle cells, several of which are known to affect cell proliferation. The effect of ketamine on proliferative response of smooth muscle cells, however, is not determined. We tested the hypothesis that ketamine may regulate proliferation of smooth muscle cells, and investigated the effects of pharmacological doses of ketamine on their proliferative capacity by measuring DNA synthesis and activation of mitogen-activated protein (MAP) kinase signalling pathway in human aortic smooth muscle cells. DNA synthesis, as determined by incorporation of 3H-thymidine into DNA, was enhanced by 73% (P < 0.0001) and 130% (P < 0.0001) with 10 and 100 µm ketamine, respectively. Ketamine-induced DNA synthesis was dependent on de novo protein synthesis, as it was abolished by an inhibitor of protein synthesis, cycloheximide. A synthetic inhibitor of MAP kinase pathway, PD98059, decreased 50% (P < 0.0001) of ketamine-induced DNA synthesis, suggesting that the activation of MAP kinase pathway was partially responsible for ketamine-induced effects. Consistently, in-gel kinase assay and in vitro kinase assay of cell lysates showed ketamine-induced MAP kinase activation and expression of ERK2 (extracellular signal-regulated kinase) in smooth muscle cells. This effect of ketamine was not dependent on de novo protein synthesis. Immunofluorescent light microscopy showed ketamine-induced nuclear accumulation of c-fos, a downstream effect of MAP kinase activation, in smooth muscle cells. In conclusion, these data support the hypothesis of the study and demonstrate that ketamine, by stimulating DNA synthesis in human aortic smooth muscle cells, may have an impact on proliferative capacity of these cells. The present results also demonstrate that ketamine induces the activation of MAP kinase pathway and nuclear accumulation of transcription factor c-fos in smooth muscle cells. They further demonstrate that the activation of MAP kinases is partially responsible for ketamine-induced DNA synthesis in human aortic smooth muscle cells. Together, these findings suggest that ketamine may play a role as a pharmacological regulator of mechanisms involved in proliferation of smooth muscle cells. [source] Trophic factors attenuate nitric oxide mediated neuronal and axonal injury in vitro: roles and interactions of mitogen-activated protein kinase signalling pathwaysJOURNAL OF NEUROCHEMISTRY, Issue 6 2005Alastair Wilkins Abstract Inflammation in the central nervous system occurs in diseases such as multiple sclerosis and leads to axon dysfunction and destruction. Both in vitro and in vivo observations have suggested an important role for nitric oxide (NO) in mediating inflammatory axonopathy. The purposes of this study were to model inflammatory axonopathy in vitro and identify modulators of the process. Rat cortical neurones were cultured and exposed to an NO-donor plus potential protective factors. Cultures were then assessed for neuronal survival, axon survival and markers of intracellular signalling pathways. The NO-donor produced dose-dependent neuronal loss and a large degree of axon destruction. Oligodendrocyte conditioned medium (OCM) and insulin-like growth factor type-1 (IGF-1), but not glial cell line-derived neurotrophic factor (GDNF), improved survival of neurones exposed to NO donors. In addition p38 MAP kinase was activated by NO exposure and inhibition of p38 signalling led to neuronal and axonal survival effects. OCM and IGF-1 (but not GDNF) reduced p38 activation in NO-exposed cortical neurones. OCM, IGF-1 and GDNF improved axon survival in cultures exposed to NO, a process dependent on mitogen-activated protein kinase/extracellular signal-related kinase signalling. This study emphasizes that different mechanisms may underlie neuronal/axonal destructive processes, and suggests that trophic factors may modulate NO-mediated neurone/axon destruction via specific pathways. [source] AMP-activated protein kinase signalling pathways are down regulated and skeletal muscle development impaired in fetuses of obese, over-nourished sheepTHE JOURNAL OF PHYSIOLOGY, Issue 10 2008Mei J. Zhu Maternal obesity and over-nutrition give rise to both obstetric problems and neonatal morbidity. The objective of this study was to evaluate effects of maternal obesity and over-nutrition on signalling of the AMP-activated protein kinase (AMPK) pathway in fetal skeletal muscle in an obese pregnant sheep model. Non-pregnant ewes were assigned to a control group (Con, fed 100% of NRC nutrient recommendations, n= 7) or obesogenic group (OB, fed 150% of National Research Council (NRC) recommendations, n= 7) diet from 60 days before to 75 days after conception (term 150 days) when fetal semitendinosus skeletal muscle (St) was sampled. OB mothers developed severe obesity accompanied by higher maternal and fetal plasma glucose and insulin levels. In fetal St, activity of phosphoinositide-3 kinase (PI3K) associated with insulin receptor substrate-1 (IRS-1) was attenuated (P < 0.05), in agreement with the increased phophorylation of IRS-1 at serine 1011. Phosphorylation of AMP-activated protein kinase (AMPK) at Thr 172, acetyl-CoA carboxylase at Ser 79, tuberous sclerosis 2 at Thr 1462 and eukaryotic translation initiation factor 4E-binding protein 1 at Thr 37/46 were reduced in OB compared to Con fetal St. No difference in energy status (AMP/ATP ratio) was observed. The expression of protein phosphatase 2C was increased in OB compared to Con fetal St. Plasma tumour necrosis factor , (TNF,) was increased in OB fetuses indicating an increased inflammatory state. Expression of peroxisome proliferator-activated receptor , (PPAR,) was higher in OB St, indicating enhanced adipogenesis. The glutathione: glutathione disulphide ratio was also lower, showing increased oxidative stress in OB fetal St. In summary, we have demonstrated decreased signalling of the AMPK system in skeletal muscle of fetuses of OB mothers, which may play a role in altered muscle development and development of insulin resistance in the offspring. [source] Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistanceTHE PLANT JOURNAL, Issue 1 2006William Truman Summary To successfully infect a plant, bacterial pathogens inject a collection of Type III effector proteins (TTEs) directly into the plant cell that function to overcome basal defences and redirect host metabolism for nutrition and growth. We examined (i) the transcriptional dynamics of basal defence responses between Arabidopsis thaliana and Pseudomonas syringae and (ii) how basal defence is subsequently modulated by virulence factors during compatible interactions. A set of 96 genes displaying an early, sustained induction during basal defence was identified. These were also universally co-regulated following other bacterial basal resistance and non-host responses or following elicitor challenges. Eight hundred and eighty genes were conservatively identified as being modulated by TTEs within 12 h post-inoculation (hpi), 20% of which represented transcripts previously induced by the bacteria at 2 hpi. Significant over-representation of co-regulated transcripts encoding leucine rich repeat receptor proteins and protein phosphatases were, respectively, suppressed and induced 12 hpi. These data support a model in which the pathogen avoids detection through diminution of extracellular receptors and attenuation of kinase signalling pathways. Transcripts associated with several metabolic pathways, particularly plastid based primary carbon metabolism, pigment biosynthesis and aromatic amino acid metabolism, were significantly modified by the bacterial challenge at 12 hpi. Superimposed upon this basal response, virulence factors (most likely TTEs) targeted genes involved in phenylpropanoid biosynthesis, consistent with the abrogation of lignin deposition and other wall modifications likely to restrict the passage of nutrients and water to the invading bacteria. In contrast, some pathways associated with stress tolerance are transcriptionally induced at 12 hpi by TTEs. [source] Animal performance and stress: responses and tolerance limits at different levels of biological organisationBIOLOGICAL REVIEWS, Issue 2 2009Karin S. Kassahn ABSTRACT Recent advances in molecular biology and the use of DNA microarrays for gene expression profiling are providing new insights into the animal stress response, particularly the effects of stress on gene regulation. However, interpretation of the complex transcriptional changes that occur during stress still poses many challenges because the relationship between changes at the transcriptional level and other levels of biological organisation is not well understood. To confront these challenges, a conceptual model linking physiological and transcriptional responses to stress would be helpful. Here, we provide the basis for one such model by synthesising data from organismal, endocrine, cellular, molecular, and genomic studies. We show using available examples from ectothermic vertebrates that reduced oxygen levels and oxidative stress are common to many stress conditions and that the responses to different types of stress, such as environmental, handling and confinement stress, often converge at the challenge of dealing with oxygen imbalance and oxidative stress. As a result, a common set of stress responses exists that is largely independent of the type of stressor applied. These common responses include the repair of DNA and protein damage, cell cycle arrest or apoptosis, changes in cellular metabolism that reflect the transition from a state of cellular growth to one of cellular repair, the release of stress hormones, changes in mitochondrial densities and properties, changes in oxygen transport capacities and changes in cardio-respiratory function. Changes at the transcriptional level recapitulate these common responses, with many stress-responsive genes functioning in cell cycle control, regulation of transcription, protein turnover, metabolism, and cellular repair. These common transcriptional responses to stress appear coordinated by only a limited number of stress-inducible and redox-sensitive transcription factors and signal transduction pathways, such as the immediate early genes c-fos and c-jun, the transcription factors NF,B and HIF - 1,, and the JNK and p38 kinase signalling pathways. As an example of environmental stress responses, we present temperature response curves at organismal, cellular and molecular levels. Acclimation and physiological adjustments that can shift the threshold temperatures for the onset of these responses are discussed and include, for example, adjustments of the oxygen delivery system, the heat shock response, cellular repair system, and transcriptome. Ultimately, however, an organism's ability to cope with environmental change is largely determined by its ability to maintain aerobic scope and to prevent loss in performance. These systemic constraints can determine an organism's long-term survival well before cellular and molecular functions are disturbed. The conceptual model we propose here discusses some of the crosslinks between responses at different levels of biological organisation and the central role of oxygen balance and oxidative stress in eliciting these responses with the aim to help the interpretation of environmental genomic data in the context of organismal function and performance. [source] Isothiocyanate E-4IB induces MAPK activation, delayed cell cycle transition and apoptosisCELL PROLIFERATION, Issue 3 2007J. Bodo Methods and results: In the current investigation, we examined the consequence of activating of signalling pathways during the release the cells from the block at G1/S boundary by synthetic isothiocyanate E-4IB. Using synchronized leukaemic HL60 cells, we show that activation of mitogen-activated protein kinases ERK1/2, c-Jun N-terminal kinase and p38 signalling pathways by E-4IB are coupled with delayed transition through the cell cycle and rapid cell cycle arrest resulted in diminished mitochondrial membrane potential culminating in apoptosis. These events were accompanied by histone deacetylase inhibition, increase of double strand DNA breaks detected by histone H2AX phosphorylation and up-regulation of cell cycle regulatory protein p21 and phosphorylation of CDC25C phosphatase. Conclusion: These findings suggest that the activation of mitogen-activated protein kinases signalling pathways, followed by the induction cell cycle arrest and apoptosis, might be responsible for anticancer activities of E-4IB. [source] |