Kinases ERK1/2 (kinase + erk1/2)

Distribution by Scientific Domains


Selected Abstracts


Agonist-induced internalization of histamine H2 receptor and activation of extracellular signal-regulated kinases are dynamin-dependent

JOURNAL OF NEUROCHEMISTRY, Issue 1 2008
A-Jing Xu
Abstract Histamine H2 receptor (H2R) is a member of G protein-coupled receptor family. Agonist stimulation of H2R results in several cellular events including activation of adenylate cyclase and phospholipase C, desensitization of the receptor, activation of extracellular signal-regulated kinases ERK1/2, and receptor endocytosis. In this study, we identified a GTPase dynamin as a binding partner of H2R. Dynamin could associate with H2R both in vitro and in vivo. Functional analyses using dominant-negative form of dynamin (K44E-dynamin) revealed that cAMP production and the following H2R desensitization are independent of dynamin. However, the agonist-induced H2R internalization was inhibited by co-expression of K44E-dynamin. Furthermore, activation of extracellular-signal regulated kinases ERK1/2 in response to dimaprit, an H2R agonist, was attenuated by K44E-dynamin. Although H2R with truncation of 51 amino acids at its carboxy-terminus did not internalize after agonist stimulation, it still activated ERK1/2, but the degree of this activation was less than that of the wild-type receptor. Finally, K44E dynamin did not affect ERK1/2 activation induced by internalization-deficient H2R. These results suggest that the agonist-induced H2R internalization and ERK1/2 activation are partially dynamin-dependent. Furthermore, ERK1/2 activation via H2R is likely dependent of the endocytotic process rather than dynamin itself. [source]


Role of mitogen-activated protein kinases, nuclear factor-,B, and interferon regulatory factor 3 in Toll-like receptor 4-mediated activation of HIV long terminal repeat

APMIS, Issue 2 2009
RANDI S. BERG
Monocytes/macrophages are known to represent a potential reservoir of human immunodeficiency virus type 1 (HIV-1), which ensures continuous replication of the virus in patients on highly active antiretroviral therapy (HAART). Infected macrophages are a highly productive source of HIV-1 during infections with common opportunistic pathogens. Previous studies report that toll like receptors (TLR)s play a role in HIV-1 replication in macrophages. Here, we investigate the three main pathways activated through TLR4 and the interactions with the HIV-1 long terminal repeat (LTR), using human embryonic kidney (HEK) 293 cells expressing TLR4 and transfected with a luciferase reporter under the control of the HIV-1 LTR. Here, we demonstrate, that TLR4-mediated activation of HIV-LTR is largely governed by the nuclear factor-,B pathway. Neither of the mitogen-activated protein kinases ERK1/2, JNK, or p38 nor the transcription factor interferon regulatory factor 3 were involved in the direct transactivation of HIV-LTR through stimulation of TLR4. [source]


Isothiocyanate E-4IB induces MAPK activation, delayed cell cycle transition and apoptosis

CELL PROLIFERATION, Issue 3 2007
J. Bodo
Methods and results: In the current investigation, we examined the consequence of activating of signalling pathways during the release the cells from the block at G1/S boundary by synthetic isothiocyanate E-4IB. Using synchronized leukaemic HL60 cells, we show that activation of mitogen-activated protein kinases ERK1/2, c-Jun N-terminal kinase and p38 signalling pathways by E-4IB are coupled with delayed transition through the cell cycle and rapid cell cycle arrest resulted in diminished mitochondrial membrane potential culminating in apoptosis. These events were accompanied by histone deacetylase inhibition, increase of double strand DNA breaks detected by histone H2AX phosphorylation and up-regulation of cell cycle regulatory protein p21 and phosphorylation of CDC25C phosphatase. Conclusion: These findings suggest that the activation of mitogen-activated protein kinases signalling pathways, followed by the induction cell cycle arrest and apoptosis, might be responsible for anticancer activities of E-4IB. [source]


Identification of pro-interleukin 16 as a novel target of MAP kinases in activated T lymphocytes

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2004
Arian Laurence
Abstract T lymphocyte activation is controlled by a coordinated web of tyrosine and serine kinases. There is a large body of information about tyrosine kinase substrates in T cells but analysis of serine kinase substrates has been more difficult. Recently we described an antiserum that recognizes serine-phosphorylated peptides corresponding to the substrate sequences for AGC serine kinases. This antiserum, termed PAP-1 (phospho antibody for proteomics-1), has proven useful for probing the serine phosphoproteome of antigen receptor-activated T lymphocytes. The present study shows that PAP-1 can also be used to explore serine kinases activated by cytokines and chemokines in T cells. Using PAP-1, together with proteomic analysis, the precursor form of the cytokine IL-16 (ProIL-16) was shown to be phosphorylated on Ser144 in antigen receptor-, SDF1,- and IL-2-activated T cells. Genetic and pharmacological-inhibitor experiments showed that the phosphorylation of ProIL-16 is dependent on activation of the kinases Erk1/2. IL-16 is secreted by mitogen-activated T cells, and the biochemical link between ProIL-16 and Erk1/2, revealed by studies with PAP-1, prompted analysis of the role of MAP kinases in this response. We show that TCR-mediated secretion of IL-16 is dependent on MAP kinases. The present study thus reveals how phosphoproteomic analysis opens previously unrecognized avenues for research, and yields novel insights about targets for MAP kinases in T lymphocytes. [source]